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Orthostatic vasovagal syncope is the sudden loss of consciousness resulting from a temporary impair-
ment of cerebral blood flow, within approximately an hour of standing. Patients who suffer from this
problem have “vasovagal syndrome”. The purpose of this thesis was to devise a method to detect the
syndrome following the assumption of upright position.

Data from 106 syncopal patients undergoing head-up tilt table testing (HUT) were acquired, includ-
ing electrical activity of the heart (electrocardiogram), blood pressure, oxygen saturation, and cerebral
perfusion parameters from near-infrared spectroscopy (NIRS). The data set was examined with the aim
of generating automatic diagnoses. Comparison of the rate-pressure product (blood pressure multiplied
by heart rate) during the time of syncope with a recommended threshold, in addition to comparison
with monitoring the fall of systolic blood pressure during prolonged tilt, yielded an 84% accuracy rate
for vasovagal syndrome.

The thesis reviewed the techniques used on the aforementioned time series by previous researchers,
emphasising the concepts underlying “time-frequency analysis”, a method for analysing nonstationary
signals. Since even healthy patients experience time-varying frequency information in their haemodynam-
ics, a transform known as the Smoothed Pseudo-Wigner Ville Distribution (SPWVD) is well suited to
their analysis. This distribution was applied to RR tachograms, plots of heart period against time. After
the smoothing parameters of the SPWVD were chosen based on artificial data, the optimised transform
was then applied to a second artificial tachogram to calculate the LF/HF (low- to high-frequency) ratio,
an indicator of heart rate variability. The computed LF/HF ratio tracked the expected value within an
error margin of 3.6%. Finally, by applying the same transform to clinical data, it was proved to offer
better resolution than an alternative known as the Lomb periodogram.

Classical techniques from the literature predicting vasovagal syncope were found to fail on the current
data set: out of 29 tests, only two yielded statistically significant differences between the two patient
groups. These were compared with the author’s time-frequency analysis of RR tachograms, linear regres-
sion of heart rate, and examination of NIRS oscillations and changes on tilt. Of these, the ICFV during
time period P3 was found to perform best (negative predictive value: 0.86). A linear classifier was used
to combine the best four predictors; it achieved an overall accuracy of 0.88.

Following the data-driven approach, an analytical modelling approach was undertaken. In order to
define an appropriate model that traded off simplicity with comprehensiveness, the mechanisms of vasova-
gal syncope were reviewed. A model of orthostasis was developed, validated, and used toward parameter
estimation from patient data. Three parameters (baroreceptor operating point, cardiac effectiveness, and
baroreflex gain) were gleaned from the supine baseline recording to “normalise” the model for a given
patient, before four new parameters (sympathetic and parasympathetic gains at the sino-atrial node,
peripheral vasoconstriction gain, and total blood volume) were estimated from the data collected in the
upright position. The expectation was that this approach would improve feature extraction (and hence
prediction accuracy) as well as the clinical interpretation of the results. However, the modelling approach
was found to offer no significant improvement upon the data-driven signal processing results: a linear
classifier on the four post-tilt parameters yielded a negative predictive value of just 0.69. This result
may have been due to inaccuracies in the time series data owing to instrumentation error. It is also
possible that the modelling approach was not able to provide the quality of feature extraction necessary
for predicting vasovagal syncope in the elderly.

Finally, methods to predict syncope during mid- to late HUT were examined. Using information
derived from heart rate and baroreflex sensitivity, a technique was developed to ease patient comfort by
terminating the test approximately 2 minutes before syncope was expected to occur.
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Chapter 1

Introduction

1.1 The Need for Syncope Prediction

Syncope is the sudden loss of consciousness resulting from a temporary impairment of cerebral blood
flow. Although recovery is always rapid, syncopal attacks (faints) are accompanied by the loss of upright
posture, and hence present a real danger: syncope accounts for up to 3% of emergency room visits and
6% of hospital admissions [124]. Patients with recurrent syncope (frequent episodes) endure a quality of

life comparable to sufferers of rheumatoid arthritis or chronic lower back pain [109].

There are many reasons why a patient might suffer from recurrent syncope. Since standing up is often
sufficient to cause a faint, these patients are sometimes referred for a clinical test known as head-upright
tilt-table testing (HUT). This test involves tilting a patient from the supine position to a nearly vertical
position, with the support of an angled hospital bed (see Figure 1.1). In this way, the challenge of upright
posture — referred to medically as “orthostasis” — is mimicked in a controlled environment, allowing
the doctor to observe symptoms and cardiovascular reactions prior to collapse. Although HUT functions
as a rich source of information in the forming of a diagnosis, it can take up to an hour for the patient to

faint in this manner, known as orthostatic vasovagal syncope.

This occupation of valuable physician time is the primary disadvantage of HUT, leading to many
attempts to shorten the test. The experiments usually involve examination of the cardiovascular data in
the minutes that follow the tilt, in an effort to diagnose patients by predicting their tendency to faint
during prolonged HUT, but a reliable predictor has not yet been developed.

Previous work in the area of syncope prediction has focused on the analysis of one or at most two
channels of data, such as the electrocardiogram (defined in Section 1.4.2). In contrast, the current work

is distinguished not only by the novelty of some of the analyses of these individual data streams, but



moreover by the methods to combine multiple data streams in forming a prediction. The use of multiple
inputs was deemed necessary given the heterogeneity of the syncopal population, the topic of the next
chapter.

The remainder of this chapter serves to introduce the relevant medical terminology and context, to
define the type of patient data under review in the present analyses, to summarise the method in which

the data was collected, and to outline the scope of the thesis.

1.2 Historical Background

Syncope has a rich history: having fascinated people for centuries, it has elicited many speculations on its
causes, and today remains improperly understood. The following timeline introduces some of the medical

terminology applied in later chapters.

First Phase

The first historical phase focused on causes, the pathophysiology (i.e. the associated functional changes)
of vasovagal syncope, and the natural history of various entities.
1628: W. Harvey observed the unusual languor of blood from patients fainting during a blood removal

procedure [223], thereby unknowingly describing the “vasodilatory” effect of vasovagal syncope.
Vasodilation refers to the expansion of blood vessels.

1773: J. Hunter observed the scarlet colour and languor of blood from a bleeding fainter, providing
further unwitting proof of the vasodilation which is characteristic to vasovagal syncope.

1888: M. Foster deduced that inadequate cerebral blood flow is an essential component of syncope.
1895: L. Hill first asserted that vasodilation plays an important role.

1907: W. Gowers recognised the concurrence of vasodilatory and “bradycardic” components during
fainting. A bradycardia is an abnormally slow heart rate, below 60 beats per minute; it results from
high activity in the vagus nerve. Gowers coined the term “vasovagal” to refer first to the vasodilatory
and second to the vagally-mediated bradycardic component characteristic of the syncope.

1932: Sir Thomas Lewis extended Gowers’ findings while coining the term °

‘vasovagal syncope” [108].
1940s: Tilt table testing began to be used to explore the response of the body to changes in position.

1956: E. Sharpey-Schafer hypothesised that vasovagal syncope is caused by increased left ventricular
contraction triggering a “Bezold-Jarisch reflex” [184]. (This is explained more fully in the next
chapter.) His theory grew in popularity until the 1990s, when it began to be assessed more critically.

Second Phase

In the early 1980s, several studies concluded that the cause of syncope is not clear for many patients [91].

Researchers turned to more pragmatic approaches.



Early 1980s: Subgroups with high mortalities were identified to tackle this new perspective practically.

Mid 1980s: Much electrophysiological testing led to an understanding of the roles — and limitations —
of syncope tests; studies also showed that syncope in the elderly is often a complicated product
of medications, comorbid diseases, and physiological changes. (A comorbid disease is one which
occurs simultaneously with another.)

Mid 1980s to early 1990s: HUT was proven to be an excellent diagnostic tool for syncope patients.

1990s: Various international symposia were held on the topic of syncope or its subtopics. Panels were
convened to strive for a consensus on controversial aspects.

1992: The Vasovagal International Study (VASIS) proposed a three-pronged classification scheme for
vasovagal syncope [200]. This proved popular, and helpful minor modifications were later suggested
[31,92].

2001: An international “Task Force on Syncope” was created by the European Society of Cardiology,
which then published “Guidelines on management (diagnosis and treatment) of syncope” [3].

1.3 Classification and Pathology

Syncope is a symptom rather than a discrete pathological entity; its causes are many, and in fact over 100
can be identified in the literature. A useful approach is to divide these causes into three broad classes [63],
for prognostic reasons — in keeping with the philosophy of the “second phase” identified in the previous

section. These three classes are the following:
1. Cardiovascular causes (25-30% of patients; usually the most dangerous)
2. Non-cardiovascular causes (20-40%)

3. Unknown causes (30-50%; often more benign)

In many studies, the percentages vary considerably beyond the ranges given above, owing to the diverse
selection criteria applied to recruit patients. However, it is becoming possible to reduce the percentage of
“unknown” causes as diagnostic methods improve. In particular, HUT and a technique known as “carotid
sinus massage” have proved to be two important techniques in increasing the percentage of successful
diagnoses. Chapter 2 provides an overview of the causes of the most common types of syncope, according
to a more comprehensive classification system with five types.

There exists a consensus that regardless of the cause of syncope, the final pathway is always a transient
cerebral hypoperfusion, i.e. poor blood flow to the brain. It has been shown that a 6- to 8-second total
cessation of cerebral blood flow [173], or a systolic blood pressure below 60 mmHg [185], is associated with
syncope. However, there is still uncertainty regarding the mechanisms causing this cerebral hypoperfusion

in patients.



Figure 1.1: An illustration of head-upright tilt table testing, at the Radcliffe Infirmary Falls Clinic.

1.4 Available Data

1.4.1 Patients

The Falls Clinic at the Radcliffe Infirmary, Oxford, receives a steady stream of patients suffering from
unexplained falls. The typical subject is an elderly person referred by his or her primary care physician
since the patient history alone is not sufficient to form a diagnosis.

Since a large number of these patients suffer from syncope, the Falls Clinic provides an ideal data
source for investigation. The data under investigation in this thesis were acquired from January 2002 to
November 2004 at the Falls Clinic during the execution of HUT: ordinarily lasting less than two hours,
each test was performed under the supervision of a qualified physician. The protocol will be detailed in

Chapter 4.

1.4.2 Measurements

Physiological signals were recorded noninvasively before, during, and after orthostasis. Most of this
recording relied on the Software Monitor, a patient-monitoring system developed during the late 1990s
in the University of Oxford Signal Processing and Neural Networks Group [210]. The other instrument

used was the NIRO-300, from Hamamatsu. The signals recorded were as follows:



Electrical activity of the heart: Electrocardiograms, also known simply as cardiograms or ECGs,

record cardiac electrical activity in millivolts (mV); a typical example is depicted in Figure 1.2.

Blood pressure: The force per unit area that circulating blood exerts on arterial walls is defined as
blood pressure (BP). This measurement is divided into systolic and diastolic readings, registering
the pressure during cardiac contraction and relaxation respectively. The usual unit of measurement
is millimetres of mercury (mmHg). If a physician reports a BP of 120/80, this means that the BP is
oscillating once per heartbeat between a maximum (systolic) BP of 120 and a minimum (diastolic)

BP of 80 mmHg.

Pulse Oximetry: The quantity of oxygen present in blood vessels can drift slowly up or down, as
a person’s blood supply and demands vary. Oxygen is transported using haemoglobin, a blood
protein. Depending on whether oxygen molecules are bound to haemoglobin at a given time, the
protein is also referred to as oxyhaemoglobin or deoxyhaemoglobin. Oxygen saturation is expressed
as a percentage, by dividing the actual amount of haemoglobin-carried oxygen by the (theoretical)

maximum oxygen capacity and multiplying by 100.

Cerebral perfusion changes: In many patients, cerebral blood perfusion (the extent to which blood

reaches its target tissues and organs) was recorded. The details will be described in Chapter 3.

Additional processing of the above data was also performed, either offline or in real time within the
recording equipment itself. The most important parameter derived from the ECG was heart rate (HR),
measured in beats per minute. For convenience, the R peak — identified in Figure 1.2 — was extracted
as a reference point to identify the timing of each heart beat. (See Appendix A.) Counting R peaks over
a given period of time represents a standard way to calculate HR; for the current work, instantaneous
HR was approximated by first finding the “RR interval”, the time which elapses between two consecutive

R peaks. A beat-to-beat estimate of HR (in beats per minute) was then obtained from this interval.

1.5 Data-Driven versus Physiological Modelling Approaches

The analysis carried out in this thesis is concerned primarily with the goal of predicting the result of
HUT, based on the data recorded during a period of supine rest and during tilt, with the secondary aim

of automating the diagnosis of syncope. As mentioned earlier, one of the novel aspects of this thesis is
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Figure 1.2: A segment of a typical electrocardiogram (ECG), here representing one heart beat. The
vertical and horizontal axes measure electrical potential and time, respectively, in arbitrary units. The
letters P through T represent points of interest; most importantly, “R” corresponds to the moment at
which the ventricles (the largest chambers in the heart) contract, pulsing blood through the circulatory
system. [39]

the use of multiple data streams as part of this analysis. Single-parameter analysis is of limited use in
the analysis of a multi-factorial problem such as syncope. Therefore, the analysis of multiple parameters
was thought likely to yield greater understanding.

There are two main ways that multiple data streams can be analysed: data-driven approaches and
analytical modelling. The former involves computing n parameters from m available data streams by
running n independent algorithms, such as cross-spectral analysis. In contrast, the latter involves con-
structing a software model of how the m measurable quantities can be expected to interact, and using a
given patient’s data to estimate n selected parameters within that model. In either case, the n parameters
can then be integrated using a linear combination or neural network and the result can be compared to
some threshold in order to determine whether a patient should be diagnosed as abnormal. Alternatively,
the n parameters can be subjected to cluster analysis or dimensionality reduction to observe patterns in
their distribution.

The choice between data-driven approaches and physically-based models often arises in biomedical
engineering. Data-driven approaches can be computationally simpler than modelling, since the latter
requires multiple runs of the model for the purpose of parameter fitting. In addition, data-driven ap-
proaches do not require as thorough a knowledge of the underlying system; indeed, it is theoretically

possible to classify data reliably using a parameter of completely unknown origin.



However, data classification in biomedical engineering is often, as in the present case, a diagnosis
which must be justified to a physician. This is where one of the advantages of physically-based models
becomes evident: the results are often easier to explain to the medical community. This is because a
physician can appreciate a diagnosis more readily when it is based on the calculated abnormality of a
particular physiological quantity. A second important advantage of modelling is that in some cases it
provides superior feature extraction: this occurs when models are able to make abstractions of a kind not
possible with the data-driven approach. More precisely, raw clinical data can be extended when they are
used to fit the parameters of a given model; for example, a control model of how blood pressure provides
negative feedback on heart rate can be used with clinical data to estimate the gain of such a system in a
given patient. A third advantage of analytical modelling is that it can provide physiological insight if a
new or extended model is able to reproduce clinical data faithfully. For instance, deBoer et al. [42] used
a beat-to-beat model of blood pressure and heart rate to refine the understanding of the causal pathways
relating the two.

The two approaches, data-driven and analytical model-based, need not be pursued in isolation. Hy-
brids are possible, for example when a knowledge-based model contains as a unit a data-driven represen-
tation. As a second example, the signal processing normally associated with a data-driven approach can

influence the development of a physiological model in at least two ways:

e Specifying causal links between parameters, by determining their transfer function, or analysing

their phase lag

o Identifying new parameters of interest to add to the model

The thesis approaches the problem of syncope prediction using first the data-driven approach (Chap-
ters 4 through 6), followed by the analytical model-based approach (Chapters 7 and 8). This plan is

described in more detail below.

1.6 Overview of the Thesis

The next chapter defines key physiological concepts and then delineates the different ways in which
syncope can occur, before describing the current diagnostic protocols for syncope. Chapter 3 focuses on

how these concepts have been investigated to develop our understanding of syncope, with a view to being



able to predict it. This chapter also reviews most of the signal processing literature of relevance to the
dianosis and prediction of syncope.

Chapter 4 introduces the data acquisition from the Falls Clinic patients and evaluates the use of
straightforward syncope diagnosis techniques to analyse these patients. The following chapter describes
the time-frequency analysis of beat-by-beat heart rate, using a distribution named the Smoothed Pseudo
Wigner-Ville Distribution (SPWVD). The aim is to devise a new method of interpreting ECGs, suited
to the task of predicting syncope in the elderly population. This method is then applied in Chapter 6,
using the first few minutes of ECG data collected after tilt during HUT. In addition to this analysis, the
performance of other syncope predictors is reported.

The signal processing approach to the problem of syncope prediction is followed by a physiological
modelling approach described in Chapters 7 and 8. The construction of an accurate model requires
a level of physiological detail beyond that described in Chapter 2; the aim of Chapter 7 is therefore
to summarise the essential physiological mechanisms for each of three hypothetical causes of vasovagal
syncope. This understanding informs the development of the “Orthostasis Model”, a lumped-parameter
model described in Chapter 8. After the model is validated, it is used to estimate parameters for the Falls
Clinic patients. These parameters are in turn used in an attempt to predict syncope, as was previously
done in Chapter 6. A comparison of the results of Chapters 6 and 8 concludes the chapter.

Chapter 9 examines syncope prediction in the later stages of HUT. The aim becomes no longer to
try to save the clinician time, but rather to increase patient comfort by avoiding syncope if it is certain.
Finally, Chapter 10 summarises the findings of the thesis and reviews the relevance of the results of
physiological modelling with respect to those of signal processing. It finishes by making suggestions for

future work.



Chapter 2

The Diagnosis and Treatment of

Recurrent Syncope

2.1 Introduction

This chapter reviews how syncope is diagnosed and treated by the medical community. Although various

subclassification schemes exist, the categories used in the remainder of the thesis are defined as follows [3]:

1. Orthostatic hypotension
Cardiac arrhythmias as primary cause
Structural cardiac or cardiopulmonary disease

Cerebrovascular syndromes

ARl

Neurally mediated reflex syndromes

(See Figure 2.1.) After these five types of syncope are described, this chapter will discuss how syncope is
diagnosed and treated. However, two physiological concepts not particular to syncope require explanation

first: the baroreflex and cerebrovascular autoregulation.

Figure 2.1 (Next page): A quantitative interpretation of the various types of syncope, based primarily
on information from [3]. Values of parameters are not sufficient for a diagnosis, and must be interpreted
alongside qualitative factors, including patient history. The ideal starting point for the diagnosis includes
a careful history and physical examination, followed by supine and upright BP measurements and a
standard 12-lead ECG. Abbreviations: HR = Heart Rate; BP = Blood Pressure; CSM = Carotid Sinus
Massage; CBF = Cerebral Blood Flow; ECG = electrocardiogram.
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Figure 2.2: Schematic diagram of the baroreflex (From Clifford [39], adapted from deBoer et al. [42]).

2.2 Physiological Background

2.2.1 The Baroreflex

The “baroreflex” is a negative feedback system which smooths transient BP (blood pressure) changes, as
illustrated in Figure 2.2. A decrease in BP reduces the stretch in blood vessel walls, and this relaxation
is detected by pseudo-strain gauges known as “baroreceptors”. These pressure receptors help govern the
activity of the sympathetic nervous system: a decrease in BP is countered by an increase in sympathetic
nervous outflow, and vice versa. When BP falls, the baroreceptors therefore cause a compensatory rise
in cardiac output as well as an increase in peripheral resistance (the total resistance to flow of blood in
the systemic circuit) via vasoconstriction. These two responses act to raise BP back towards its initial

value.

2.2.2 Cerebrovascular Autoregulation

The brain must maintain a steady flow of nutrients to its cells, countering challenges from the rest of the
body such as low BP or high levels of oxygenation. This process is known as cerebral autoregulation.
It is believed that the brain’s primary mechanism for accomplishing this task involves the control of

cerebral blood flow (CBF) with a negative feedback loop [219]. The feedback involves vasoconstriction

11



A Active Standing Passive Standing B

0 HbT HbO,

10

2

: "

% BPTAR L Rm ‘.,r“"l-

© B =

% \ £ 20 |

> prrs

g -10 \\ e g *k I
% N /) 2 *

5 \M £

g N <40

[

o

® HbT 1HbT

—_— —_—

§ -30 Hb0 , HbO ,

2 HoD ey 60

g —_— —— *p <.05
© **p < 01

[ Active Standing
-50 ] Passive Standing
2 8 14 20 26 2 8 14 20 26
S )

Figure 2.3: A. Changes in HbT (total haemoglobin), HbOy (oxyhaemoglobin), and HbD (deoxy-
haemoglobin) concentrations in young subjects upon standing. B. Comparison of the maximum variation
in HbT and HbO, in young subjects during active and passive standing. [207]

and vasodilation of elements in the arterial vasculature. It should be noted that although CBF and
cerebral oxygenation are kept fairly constant for a large range of blood pressures, at very high or very

low BP cerebral autoregulation fails and hence blood flow and oxygenation can decrease or rise severely.

Cerebral perfusion changes have been analysed in patients undergoing orthostatic stress. Figure 2.3A
shows that haemoglobin deoxygenates steadily for approximately ten seconds after standing, and then
begins to recover at a slightly slower rate. The degree of deoxygenation varies with the manner in which
the patient assumes the upright position, as can be shown in Figure 2.3B. (Note that “passive standing”

involves being carefully pulled upright by a nurse, minimising patient effort.)

Cerebral autoregulation is known to become impaired owing to the ageing process [207], and hence
some of the elderly Falls Clinic patients (see Section 4.2) will be affected by poor CBF control. However,
syncope can result from several causes and the role of cerebral autoregulation in syncope is still a matter
of debate. Thus far it is known that CBF is similar in healthy and syncopal patients immediately upon
standing [34,65,180], and when differences do appear later during prolonged orthostasis, they are followed
by syncope only after a significant time lag [102]. Hence, it is not at all certain that impaired control
of CBF is a common cause of syncope. Second, some groups have argued that cerebral vasoconstriction

can precede vasovagal syncope [65,68,102,191] but it is perhaps more likely that vasodilation occurs

12



instead [34,103,179].
Owing to these uncertainties, cerebral autoregulation is not included in the classification scheme

defined in Figure 2.1. However, the topic will be considered again in the next chapter.

2.3 Syncope Classification

Orthostatic Hypotension

Orthostatic hypotension is characterised by a large decrease in BP upon standing or at the start of HUT.
The problem can be caused by the failure of the body to react to the proper extent during the orthostatic
stimulus: for example, HR does not increase sufficiently, or more commonly, the blood vessels do not
vasoconstrict sufficiently. The decrease in BP can take place within a few minutes (frank orthostatic
hypotension) or over a significant fraction of an hour (“dysautonomic response” to standing).

Many of the elderly take medications with side effects which exacerbate orthostatic hypotension. (For
instance, anti-hypertension drugs can directly oppose the vasoconstriction which accompanies healthy
orthostasis.) However, another important reason why the elderly are susceptible to orthostatic hypoten-
sion is the attenuation of the autonomic nervous system with ageing. Specifically, the subsystems that
commonly degrade are blood volume regulation and baroreflex sensitivity. In the case of a healthy barore-
flex, the initial decrease in BP on standing is at least partially mitigated. However, in elderly patients
with less sensitive baroreceptors, changes in BP (whether positive or negative) cannot be detected as
effectively, and hence BP can decrease relatively unchecked upon standing.

Besides autonomic failure (primary, secondary, and drugs- or alcohol-related), another cause of ortho-
static hypotension is volume depletion, resulting for example from haemorrhage, diarrhoea, or Addison’s
disease. Patients with any form of hypovolaemia (low blood volume) are prone to lower cerebral perfusion

for obvious reasons.
Cardiac Arrhythmia / Structural Heart Disease

The causes of cardiac-related syncope are often multifactorial, although in general, impaired cardiac
output prevents the heart from matching the brain’s vascular demands under certain circumstances. The
individual factors resulting from the cardiac difficulties may include arrhythmia (irregular heart beat),
compromised haemodynamics, and neurally mediated problems. For example, the arrhythmia rate, the

status of left ventricular function, and the adequacy of vascular compensation — including the potential
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impact of neural reflex effects — are all important. The most common cardiac causes of syncope [63] will

not be described in further detail here.

Cerebrovascular (Steal Syndromes)

In steal syndromes, blood is diverted from its expected path to the brain. The most common type is
“subclavian steal syndrome”, caused when the arterial circulation to the arm is occluded in a key vessel
called the subclavian artery. Blood is shunted from one path to another, and this can result in retrograde
flow during arm exercise, when the demands of the arm muscles increase. The retrograde flow sucks

blood away from the brain, and syncope can result.

Neurally Mediated Syncope

Proposed aetiologies for the various types of neurally mediated syncope are illustrated in Figure 2.4. The
first box identifies vasovagal syncope, the most common form of neurally mediated syncope. Although
“head-up tilt” syncope appears in the second box, it is generally classified as a subtype of vasovagal
syncope as well. Since this subtype forms the main subject of the thesis, henceforth it will be referred to
by its formal name, orthostatic vasovagal syncope.

As can be seen from the figure, all forms of neurally mediated syncope are reflex reactions, mediated
by neurons. The trigger pathway of vasovagal syncope is still a matter of considerable debate, and forms
the subject of Chapter 7. For present purposes, it will be assumed that orthostatic vasovagal syncope is

evoked as follows:
1. Subject stands or is tilted upright passively.

2. Roughly a quarter of the subject’s blood is redistributed in response to this orthostatic stress.

Venous pooling occurs in the legs.
3. Decreased venous return is an obvious result.

4. Tachycardia, vasoconstriction, and increased inotropy (more forceful cardiac contractions) attempt
to compensate — as they should. FEwverything up to this point represents a more or less normal

compensatory reaction to orthostatic stress.

5. However, in vasovagal syncope patients, the forceful ventricular contractions may activate hyper-

sensitive cardiac receptors. This triggers an afferent pathway! consisting of left ventricular vagal C

1 An afferent pathway conveys neural impulses to a nerve centre, whereas an efferent pathway conveys them away.
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fibres?.

6. This phenomenon, known as the Bezold-Jarisch reflex, ultimately reduces sympathetic tone and

increases parasympathetic tone. (See Appendix B for an overview of these two systems.)
7. These changes in tone result in vasodilation and bradycardia, to induce hypotension (low BP).
8. When cerebral perfusion falls sufficiently, syncope results.

Despite the popularity of this 30-year-old hypothesis, a growing number of studies have challenged it
[71,73] and have offered more plausible alternatives: errors in central nervous system processing, involving
chemicals such as serotonin and delta opioids; or hormonal problems, such as the effect of vasopressin on
baroreceptor sensitivity. These theories are explored more fully in Chapter 7.

Vasovagal syncope is commonly subdivided into three types — cardioinhibitory, vasodepressor, and
mixed — and two “exceptions”, using a scheme known as the “VASIS” classification [200]. These five

cases are described at the bottom of Figure 2.1.
2.4 Differential Diagnosis

The procedure to diagnose a patient with recurrent syncope results in what is known as a differential
diagnosis. It is known as such since one diagnosis is selected out of several different possibilities; these
were summarised in Figure 2.1. Procedures vary from physician to physician, depending on his/her
opinions on what constitutes the best approach, as well as the healthcare system of the host country.
Numerous flowcharts have been proposed to diagnose the various types of syncope in preparation for
treatment [25,26,79,196]. A recent flowchart was compiled by the Task Force on Syncope [3] and is
reproduced in Figure 2.5. Some key points to accompany the flowchart are outlined in Table 2.1. The
following is a discussion of the primary diagnostic methods for syncope, structured approximately on the

green-shaded steps in this figure.
2.4.1 Initial Evaluation

It is widely accepted that a thorough patient history is the most important component of syncope diag-

nosis, identifying a potential cause of syncope in nearly half of patients. Basic laboratory tests comprise

2(C fibres are examples of nerves which affect the autonomic nervous system (ANS), the part of the nervous system that
handles our “unconscious” functions such as digestion or heart beat regulation. The ANS is divided into sympathetic and
parasympathetic branches, which have a push-pull effect, e.g., the former increases our heart and respiration rates, while
the latter reduces them.
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Figure 2.4: Proposed pathways of neurocardiogenic syncope, including vasovagal syncope. The specific
pathways are disputed, being poorly understood: head-up tilt may use an afferent pathway not shown,
and all humoral mechanisms have been overlooked in this diagram. However, the list of syndromes and ex-
planation of efferent pathways are less controversial. In the upper central portion of the diagram, afferent
nerve traffic is believed to reach the NTS (nucleus tractus solitarius) within the medulla (see Appendix B).
Roman numerals refer to standard designations for the cranial nerves. A (+) sign means the effect is
increased, whereas a (-) sign signifies diminished effect. GI = gastrointestinal; GU = genitourinary. [13]

If the patient has ... The first diagnostic step is ...

Suspected heart disease Echocardiography and prolonged electrocardio-
graphic monitoring (if non-diagnostic, electro-
physiological studies should follow)

Chest pain suggestive of ischaemia Stress testing, echocardiography, and electrocar-
diographic monitoring

A young age, without suspicion of heart or neuro- | Head-upright tilt table testing

logical disease
Syncope during neck turning Carotid sinus massage

Syncope during effort Echocardiography and stress testing

Table 2.1: Conditions overriding Figure 2.5. Explanations of terms in the right-hand column can be
found in Section 2.4.2. Ischaemia is low oxygen concentration in tissues, usually due to obstruction of
the arterial blood supply or simply inadequate blood flow.

part of the initial evalution if syncope may be due to loss of circulating volume, or if a syncope-like
disorder with a metabolic cause is suspected.

The results of the initial evaluation are diagnostic in certain situations. Orthostatic hypotension

is diagnosed when BP decreases significantly upon standing or at the start of HUT after lying supine

16




Syncope

Initial evaluation

v v
Catitin @ Unexplained
suspected > -
diagnosis yncop
No diagnosis v v
made Structural heart No structural
disease or » heart di and
abnormal ECG normal ECG

1}

Negative
SRS @7 Single/rare
severe
Diagnosis
made
Positive .
ﬁ Positive Negative i

Figure 2.5: The flow diagram proposed by the Task Force on Syncope of an approach to the evaluation
of syncope. BP = blood pressure; ECG = electrocardiogram; NMS = neurally mediated syncope. [3]

=

for five minutes. Hence it can be diagnosed either during the initial evaluation or later during HUT
(see Section 2.4.3). There is disagreement on the extent and type of the decrease required to secure a
diagnosis. Popular criteria include systolic BP falling more than 20 mmHg, diastolic BP falling more
than 10 mmHg, and (less commonly) systolic BP falling below 80 or 90 mmHg. This will be discussed
further in Chapter 4.

Vasovagal syncope is diagnosed if precipitating events such as fear, severe pain, emotional distress,
connection to instrumentation, or prolonged standing are associated with typical prodromal® symptoms.
HUT can further help to classify the type of syncope as Type I, ITA, IIB, or III [200], but in the elderly,
“there is no evidence to support the use of head-up tilt studies as part of the initial? evaluation” [3].

Situational syncope is easily diagnosed if syncope occurs during or immediately after urination, de-
faecation, coughing or swallowing. Cardiac ischaemia-related syncope is diagnosed when symptoms are
present with ECG evidence of acute ischaemia with or without heart attack, i.e., irreversible heart mus-

cle injury. Arrhythmia-related syncope is diagnosed by ECG if there exists any of a number of specific

3Medically, a prodrome is an early symptom indicating the onset of an attack.
4The word instial is important here, for there is of course ample evidence of the usefulness of HUT.
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problems, which will not be detailed here in the interests of brevity.

2.4.2 Cardiac Evaluation

The cardiac evaluation may involve “echocardiography”, i.e. ultrasonic analysis of the heart. This can
ascertain patient risk by determining the type and severity of heart disease; however, this test allows a
final diagnosis in only a few cases — e.g. severe aortic stenosis (narrowing of the aorta, a major artery)
and atrial myxoma (a tumour in the atrium).

A more common test is electrocardiographic monitoring, of one of the following two general types:

Non-invasive: Holter monitoring, external ECG event monitoring. When there is a high pre-
test probability of identifying an arrhythmia, syncope patients with structural heart disease should
undergo Holter monitoring (a 24-hour ECG). However, external ECG event monitoring should be
used when the mechanism of syncope remains unclear after full evaluation. This monitor records

(to a small memory) only cardiac events of potential interest, instead of the entire ECG.

Invasive: ECG event monitoring via an Implantable Loop Recorder. This alternative is grow-
ing rapidly in popularity. It has further been suggested that there may be value in combining the
ILR with measurement of electrical activity in the brain (electroencephalography), CBF, hormonal

and blood sugar changes, and, above all, the haemodynamic response [143].

When a correlation between syncope and an electrocardiographic abnormality (brady- or tachyarrhyth-
mia) is detected, ECG monitoring can be considered diagnostic. Second, when syncope occurs during
sinus rhythm (a normal heart beat), arrhythmic causes are excluded. In the absence of such correlations,
additional testing is usually warranted.

A third test sometimes used during the cardiac evaluation is electrophysiological testing, which, like

ECG monitoring, can be divided into two types [79]:

Non-invasive: Transoesophageal electrophysiological study. This test begins with the insertion
of a thin, flexible tube into the nostril. The tube is then advanced to the back of the throat, where

it can influence the electrical activity of the heart and record the resulting behaviour.

Invasive: Intracardiac electrophysiological study. This test begins by inserting a thin, flexible
catheter into a vein in the leg. The catheter is pushed up to the heart, guided by x-ray fluoroscopy.

Once there, its functionality is similar to that of non-invasive electrophysiological testing.
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Figure 2.6: A plot of systolic (red) and diastolic (green) BP during three periods of carotid sinus massage
(CSM, denoted by blue horizontal lines). Since CSM elicited immediate marked decreases in BP, this
patient was diagnosed with vasodepressor carotid sinus hypersensitivity (CSH).

These electrical stimulate-and-record methods can determine the cause of a tachycardia. They are good
diagnostic tests in patients with coronary artery disease, markedly depressed cardiac function, or simply
unexplained syncope. Patients with bifascicular block (a particular conduction problem in the heart)
often benefit from types of electrophysiological study as well.

2.4.3 NMS Evaluation

Carotid Sinus Massage

Cartotid sinus massage (CSM) is a technique to uncover problems in the baroreceptors (see Section 2.3)
of a person’s neck area. Before performing CSM, baseline measurements of HR and BP are first noted.
Then a physician firmly massages the right carotid artery for 5-10 s where the pulse is strongest. If the BP
decreases by more than 50 mmHg, the patient is likely to have vasodepressor carotid sinus hypersensitivity
(CSH). If the heart stops beating for more than three seconds, the diagnosis is cardioinhibitory CSH.
If both these phenomena occur, the patient has “mixed” CSH. The symptoms of vasodepressive CSH
are demonstrated clearly by the BP traces shown in Figure 2.6: note the large decreases immediately
following CSM.

CSM is usually comprised of either five seconds of massage in the supine position, or ten seconds of
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massage supine followed by massage while upright if not successful. Predictably, the former approach
yields lower positive rates: just ignoring the upright position misses the diagnosis in about a third of
cases [32,150]. The Task Force on Syncope [3] favours the second method, and the protocol at the Falls

Clinic (described in Chapter 4) is similar to this.
Head-Upright Tilt Table Testing

Head-upright tilt table testing (HUT) has reasonable specificity and sensitivity® when performed correctly.

A general outline of the test is:

1. A passive, supine phase of 20—45 minutes

2. A tilt to 60-80° from horizontal, for about 45 minutes

3. The test ends earlier if syncope occurs; patient should then be immediately returned to the supine

position for recovery

Two well-known protocols are the Westminster protocol [51] and, more recently, the Newcastle protocol
[93]. In general, the latter appears to be in remarkable agreement with the other tilt procedures in the

literature, but areas of contention do exist, including:

Fasting: It has been suggested [199] that “patients should fast for at least 3 hours before testing, or
overnight in preparation for early morning studies”. However, the Newcastle protocol disagrees:
“Patients, in particular those over 60 years old, should be fasted for no more than two hours before
the procedure in order to avoid the confounding effects of relative dehydration and hypotension.”
This is backed by a reference to Benditt and Grubb [15]. As [199] and [93] both come from highly
respected contributors to the field (Sutton and Bloomfield on one side, versus. Kenny et al. who
then reference Benditt and Grubb), the jury remains out on this point. However, interestingly,
Benditt and Kenny later sat on the international Task Force on Syncope [3] which concluded that
“patients should fast for at least 2 hours before the test”. Since the ingestion of just 16 ounces of
water five minutes before HUT has been shown to impact HUT results [112], it is likely that the

choice whether to fast or not in the preceding hours also has a bearing on the test outcome.

5Specificity and sensitivity are true negative and true positive rates, respectively. Specificity is the probability that a
screening test is negative given that the person does not have the disease, and sensitivity is the probability that a test is
positive given that the person has the disease.
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Drugs: Very often, experimenters administer drugs such as isoproterenol or nitroglycerin during HUT
to increase the rate of positive response. Since this is not the practice at the Falls Clinic in Oxford,
owing to concerns about decreasing the test’s specificity and patient well-being, such drugs will not

be discussed in detail here.

An alternative to HUT is the application of lower-body negative pressure (LBNP), whereby the
patient’s legs are surrounded by a hermetic tube which is then partially evacuated. The effect of LBNP
is to draw blood into the legs from the upper body, to simulate orthostasis. This was not employed in

the Falls Clinic since the use of the tilt table is the preferred test.

2.4.4 Other Diagnostic Tests

The above explanation of the differential diagnosis represents only a summary of the most common rec-
ommendations and practices. Other tests which have not been described in full include exercise testing,
for exertion syncope; cardiac catheterisation and angiography, for suspected myocardial ischaemia; neu-
rological and psychiatric evaluation, when no particular physiological cause of syncope is suspected; and

the ATP (adenosine triphosphate) test, whose diagnostic value remains to be validated.

2.5 Treatment

When deciding on treatment, two important factors to consider are the frequency of syncope occurrence,
and the public health risk. In other words, patients who do not suffer from frequent syncope can enjoy

minimal treatment, but airline pilots and truck drivers should be carefully attended regardless.

Orthostatic Hypotension

As this is most often caused by drug-induced autonomic failure, an obvious treatment is to stop, reduce
the dose of, or replace the drugs in question. Of course, for some drugs, especially vasodilators and
diuretics, this is difficult. However, educating the patient regarding the various circumstances that
influence systolic BP (e.g. standing, heat, exertion, large meals), and developing strategies to combat an
individual’s problems (e.g. encouraging small but frequent meals, discussing leg crossing and squatting)
is an easy treatment. Higher salt intake, fluid intake, and the volume-expander “fludrocortisone” are
often advised, while support stockings and abdominal binders can reduce vascular pooling. The newer
drug “midodrine” increases peripheral resistance and reduces gravitational downward displacement of

central volume.
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Cardiac Arrhythmias as Primary Cause

The severity, nature, and setting of the arrhythmia must be considered. Treatment can include installing
a pacemaker or implantable cardioverter-defibrillator (ICD), administering drugs such as beta blockers,

or surgically excising cardiac tissue.

Structural Cardiac or Cardiopulmonary Disease

Treatment is not always possible, especially for patients suffering from primary pulmonary hypertension
or restrictive cardiomyopathy (heart problems of an undiagnosed cause). However, when the problem is
myocardial ischaemia, pharmacological therapy and revascularisation (returning blood flow to the area)
are usually appropriate. For other problems, in general treatment should be aimed directly at improving

the specific structural lesion or its consequences.

Vascular Steal Syndromes

Angioplasty or other forms of corrective surgery are ordinarily effective for subclavian steal syndrome.
Angioplasty is the surgical repair of a blood vessel, either by inserting a balloon-tipped catheter to unblock

it, or by reconstructing or replacing part of the vessel.
Neurally Mediated Reflex Syncopal Syndromes

An obvious treatment involves the physician explaining the risk of the syndrome, and reassurance about
the prognosis. Equally obvious is avoidance of trigger events as much as possible, e.g. a causal situation
such as an emotional upset in situational syncope. Stopping or reducing the dose of a hypotensive drug
treatment for a concomitant condition can help. Cardiac pacing can help patients with cardioinhibitory
or mixed carotid sinus syndrome, as well as those with frequent cardioinhibitory vasovagal syncope,
those with severe physical injury, and the elderly. Volume expansion by salt supplements, an exercise
programme or head-up tilt sleeping (sleeping at an angle in excess of 10°) can assist posture-related
syncope. Finally, “tilt training” (tilting the patient daily to increase tolerance) in patients with vasovagal

syncope may be useful.

2.6 Conclusion

Classification of the various types of syncope is possibly reaching maturity. This represents a significant

improvement over the situation two decades ago, when classification schemes were still inchoate. The
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diagnosis and treatment of recurrent syncope remains a controversial endeavour, although recent attempts
to form a consensus have helped streamline such procedures to a certain extent.

Research using signal processing has the potential to uncover new causal pathways or, alternatively,
to pioneer a novel treatment strategy. As explained in Section 1.4.2, patients in the Falls Clinic who
underwent HUT between January 2002 and November 2004 had the following vital signs monitored: ECG,
BP (using an inflatable cuff on the arm), beat-by-beat BP, oxygen saturation, and cerebral perfusion.
Syncope diagnostic protocols often involve the first two or three of these (ECG and BP). Hence, out of
the five types of syncope listed at the start of this chapter, the data recorded during these studies should
help with the diagnosis of the first and last. (Although some cardiac arrhythmias also have the potential
to be detected from the data included within the data set, this field of investigation was not pursued
during the thesis, for the following reasons: first, some arrhythmias would be missed owing to the lack
of some of the tests described in Section 2.4.2; second that the development of algorithms to detect the
various types of arrhythmias is a non-trivial exercise.)

As stated in Chapter 1, the primary purpose of this thesis is the prediction, rather than diagnosis, of
syncope. Whereas a diagnosis is achieved using as much information as possible (for example, all data
recorded during prolonged HUT), predictions need to be made as early as possible during a test — for
example, by analysing only the supine data and the data recorded immediately after tilt.

Orthostatic hypotension requires only five minutes to diagnose; hence, little value exists in devising
a predictor to substitute for the traditional test described in Section 2.4.1. However, as explained in
Section 2.4.3, the accurate diagnosis of vasovagal syndrome requires a much longer test; it is here that in-
vestigations into syncope prediction will be most useful. Such investigations are the subject of Chapters 5
and 6, using the Oxford Falls Clinic patient database (see Section 1.4). Since a good prediction is one
that matches the diagnosis, techniques for automated diagnosis are described first. Results from these
can set the benchmark for prediction algorithms, and so Chapter 4 concentrates on syncope diagnosis
using the same Falls Clinic HUT database. As an introduction to these chapters, Chapter 3 examines

the signal processing relevant to both syncope diagnosis and syncope prediction.
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Chapter 3

Instrumentation and Signal
Processing for the Investigation of
Syncope

3.1 Introduction

The previous chapter described the physiological background and tests for syncope; the present chapter
focuses on the instrumentation and signal processing which have been used for the diagnosis and prediction
of syncope. To begin, the next section reviews previous work in chronological order. This is followed
by a technical description of the instrumentation selected for data acquisition in the Oxford Falls Clinic.
Finally, the largest section is reserved for a literature review of the research undertaken with these

measurements, with a focus on signal processing.

3.2 Historical Background of Signal Acquisition and Processing
The following timeline outlines the history of the technological contributions which appear in this chapter.
1816: René Théophile Hyacinthe Laénnec invented the stethoscope.

1881: Samuel Siegfried von Basch invented the sphygmomanometer, allowing the first non-invasive mea-

surement of BP. (Earlier devices were somewhat bloody.)
1896: Scipione Riva-Rocci invented a simpler, more accurate sphygmomanometer.
1901: Willem Einthoven invented the string galvanometer to create accurate electrocardiograms.

1905: Nikolai Korotkoff fully described auscultatory! sounds, using the stethoscope and Riva-Rocci

1 Auscultation is the act of listening for sounds within the body.
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sphygmomanometer. These sounds are still used today by virtually every physician making a blood

pressure measurement.
1936: Karl Matthes invented a basic oxygen saturation meter for the ear using two wavelengths of light.
Early 1940s: Glen Millikan developed a lighter version of Matthes’ device for use in aviation.

1965: Interest in heart rate variability (HRV) was stirred when E.H. Hon and S.T. Lee discovered that

foetal distress and its resultant HR change are preceded by alterations in interbeat heart intervals.

1965: James Cooley and John Tukey invented the modern version of the Fast Fourier Transform (FFT).

(Earlier attempts to speed up Fourier transforms in fact date as far back as Gauss.)
1972: Takuo Aoyagi invented the modern version of the pulse oximeter.

1977: Jobsis van der Vliet outlined the use of near-infrared spectroscopy (NIRS) as a tool to monitor
oxygenation. Working systems were later developed in the 1980s and used to monitor cerebral

blood flow.

Late 1980s: The possible role of HRV in risk stratification took a step forward: HRV was thought
to be a predictor of mortality after an acute myocardial infarction. (Later this was shown to be

activity-dependent.)

1992: HR and BP were chosen as the two key parameters in a classification scheme aimed at subdividing

vasovagal syncope [200].

1996: A Task Force of the European Society of Cardiology standardised the common HRV techniques

[115].

3.3 Instrumentation

For each data stream introduced in Section 1.4.2; the technical details of acquisition will now be described.

3.3.1 Electrocardiography

An electrocardiogram (ECG) records the changes in cardiac electrical voltage throughout each heart beat.
The surface ECG is constructed by measuring the electrical potential between various points of the body;

in the present work the electrodes were placed near the right shoulder, on the left side of the chest, and
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near the left hip. The signals from the three leads were digitised with 12-bit accuracy at a sampling rate

of 256 Hz.

3.3.2 Beat-by-beat Blood Pressure

Beat-by-beat blood pressure was measured using a Finapres device, a noninvasive continuous finger BP
monitor. The word Finapres stands for FINger Arterial PRESsure, and this quantity is measured con-
tinuously using a volume-clamp method. The finger arteries are clamped at a fixed diameter — although
intra-arterial pressure changes continuously — by applying an external pulsating pressure via an inflat-
able bladder mounted in a finger cuff and a fast-acting servo system. Finapres uses the Physiocal criteria
of Wesseling [224] for the setpoint criteria determination; the diameter at which the finger arteries are
clamped is determined from an infrared plethysmograph mounted in the finger cuff such that transmural
pressure is zero and intra-arterial and cuff pressure are equal both in shape and in level at all times [85].

Systolic, diastolic, and mean BP are output once per heartbeat.

Arthritic fingers in the elderly can hinder the digital pressure readings of the Finapres. One study ex-
perienced difficulties in 45% of patients because of this problem [6], and at the Falls Clinic (see Section 4.2)

this may have influenced the recordings of some patients.

3.3.3 Intermittent Brachial Blood Pressure

Brachial blood pressure was measured intermittently using a self-inflating oscillometric BP measurement
module, connected via flexible tubing to an inflatable cuff, placed around the upper arm. The term
“oscillometric” indicates measurement of the oscillations caused by the arterial pressure pulse within
the arm, transmitted via cuff and tube to the central pressure sensor. The point of maximal oscillation
corresponds to mean arterial BP, while diastolic and systolic BP are derived from pressure measurement

at heuristically-determined amplitudes of the oscillating signal. [44].

3.3.4 Pulse Oximetry

Arterial oxygen saturation was measured using pulse oximeters on the shoulder, elbow, wrist, and finger.
The reflectance (or, in the case of the finger probe, transmittance) of a dual wavelength LED signal
allows variations in infrared attenuation (caused by blood pulsing in the artery) to be recorded. This
attenuation waveform is digitised with 16 bits and sampled at 81.3 Hz, and the SMP also outputs one

SpO,, figure at the end of each heart beat.
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Figure 3.1: Photograph of the NIRO-300. The display unit (large monitor) plots real-time traces of the
parameters listed on page 28, while the measuring unit (small box at right) interfaces with the probe
(shown at the other end of the cable, at lower left) on the patient’s forehead.

3.3.5 Cerebral Perfusion Changes

Most syncope diagnostic procedures focus on the ECG and BP, and do not assess local cerebrovascular
and metabolic autoregulation capacities. However, by definition syncope is intimately related to cerebral
hypoperfusion. To maintain consciousness, the brain requires roughly 11-19 ml/min/100 g of blood
flow [189]. Average flow is approximately 55 ml/min/100 g, with much of that servicing gray matter [106].

Limited information about the blood flowing to the brain can be acquired in several ways:

e Transcranial dopplerimetry

Xenon-133 uptake

Single-photon computed tomography (SPECT)

Carotid angiography

Near-infrared spectroscopy (NIRS)

The last method, noninvasive NIRS monitoring as used in the Oxford Falls Clinic, is most relevant
here. The NIRO (Near-InfraRed Oxygenation) device is a non-invasive instrument for measuring changes
in cerebral haemodynamics, including the concentration changes of oxy- and deoxyhaemoglobin and a
metabolic indicator (explained below), by placing a sensor unit on the forehead [46]. (See Figure 3.1 for a
photograph of the NIRO.) The data can be digitised at one of several sampling rates; the highest rate, 6

Hz, was usually chosen for the current research. Two independent methods are employed simultaneously:
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(a) Light Attenuation in the Near-Infrared

The Beer-Lambert Law reflects the linear relationship between concentration and absorption in a clear

solution:

A =log;, (%0) =a(N)cd (3.1)

where A is the attenuation of a beam of light travelling through the solution, Iy is the incident light
intensity (immediately before the light enters the solution), I is the transmitted light intensity (imme-
diately after the light exits the solution), a()) is a wavelength-dependent “extinction coefficient” of the
absorbing solution (in micromolar—! ecm™1!), d is the distance the light travels through the solution (the
“pathlength”, in cm), and ¢ is the concentration of the absorbing compound (analyte), in micromolar.
However, the human head is a scattering medium, not a clear solution. Hence, the Modified Beer-

Lambert Law is used:
Iy
A = logy, T)= a(N)ecdB+G (3.2)

where G is an additive term to account for scattering loss, and B is a multiplier to account for the
increased optical pathlength due to scattering — a photon must travel further to reach a given point
when scattering occurs.

For the NIRO, a laser diode provides the incident radiation. An emitter and a detector are placed
on the forehead, 5 cm apart. Using the Modified Beer-Lambert Law, the density changes of various

chromophores (i.e. compounds which absorb light in the spectral region of interest) can be measured:

0,Hb: Oxyhaemoglobin?

e HHb: Deoxyhaemoglobin

cHb: Total haemoglobin

CtOx: Oxydised cytochrome (an indicator of metabolic activity)

Because the additive term G is unknown, only the variations in these densities, and not the absolute values,

can be determined. In normal patients undergoing HUT, OsHb often decreases slightly before settling to

2See note on page 5.
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a new equilibrium [122,205]. The difference between the two time series OoHb and HHb, referred to as
Hbgig, may on tilt decrease to a smaller extent in normal controls than in patients with severe degeneration
of the autonomic nervous system [205]. Furthermore, it has been shown that O2Hb undergoes rhythmic
oscillations with a frequency of about 0.1 Hz, thought to reflect the periodic contraction and relaxation of
cerebral arteries known as vasomotion [47,123]. The amplitude of these oscillations is posture-dependent
[204,206], and has been hypothesised to reflect the degree of cerebral sympathetic stimulation on tilt.
Finally, this amplitude declines with age [182] and hence in the elderly Falls Clinic patients the oscillations

should be detectable but small.

(b) Spatially-Resolved Spectroscopy (SRS)

If the spacing between the emitter and detector d is widened slightly, the attenuation A will increase
accordingly. At d =~ 5 cm, most of this small increase will be due to added absorption, as opposed to
extra scattering. Using photon diffusion theory [202], the rate at which absorption changes as distance

increases (%) can be used to calculate the following measures:

e THI =k (O2Hb+ HHDb) : Total Haemoglobin Index

o TOI = 522 - Tissue Oxygenation Index

where k is a constant that arises from the photon diffusion calculations. While THI provides a measure
of the quantity of blood in the area of measurement, TOI describes how oxygenated the blood is. One
would expect a syncopal patient to experience a decrease in both of these parameters immediately before
fainting, as the brain becomes deprived of blood (lower THI) and hence exhausts the remaining oxygen

in the blood (lower TOI).

3.4 Parameters for Signal Processing

The key paper on classification of vasovagal syncope [200] made use of just two signals: systemic BP, and
heart rate. Indeed these are the two most common parameters involved in syncope diagnosis, although
minimal signal processing is required. Beat-to-beat assessment of these parameters is useful to keep track
of transients around the time of syncope; hence the importance of devices such as the Finapres.

This section will outline relevant signal processing parameters, including BP, HR, HRV, cerebral

perfusion changes, and PTT. Studies which yielded negative results or which used instrumentation not
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available in the current research are not included in this review (e.g. [5,12,28,61,62,136,181,188,190]).

3.4.1 Heart Rate

A graph which quantifies the fluctuations in heart rate (HR) over short time periods is called a tachogram
(from the Greek word tachos for speed). The rate of contraction of the heart is sampled once per beat
(and hence unevenly in time), being taken as the inverse of the interval which occurs between consecutive
QRS complexes (known as an “RR interval”, as explained in Section 1.4.2). The tachogram is the
resulting plot of RR interval versus time. Since the Fourier transform algorithm requires even sampling,

the tachogram is often resampled using interpolation.

3.4.2 Heart Rate Analysis for Syncope Prediction

Heart rate (HR) during supine rest probably offers no predictive insight with respect to HUT-induced
syncope; when a significant difference in baseline HR is observed between fainters and controls [8, 50,
140,142, 155,165], it is probably due to chance or poor patient selection. The kurtosis and variance of
resting HR have been used in combination with other parameters to predict syncope, with only moderate
success [137].

Upon tilt, an increase in HR in normal and syncopal subject groups is a universal finding in the
literature [9, 36,53, 88,101,114, 136, 168, 207, 208,229], as it represents an important part of the normal
autonomic response to assuming the upright position; however, several studies have demonstrated that the
degree of HR increase is greater in tilt-positive patients. Sumiyoshi et al. [198] reached this conclusion
examining the absolute beats-per-minute increase, during the first five minutes after tilt. Mallat et
al. [116] observed that the mean HR, in vasovagal syncope patients in the first six minutes of tilt reflected
a higher than normal percentage increase over baseline. Marangoni et al. [119] found that the increase
in HR from baseline during all stages of the test after 3 minutes of tilt was higher in tilt-positive than in
tilt-negative patients.

The same research group found that the HR itself (as opposed to the change) was higher from the
start to the end of the upright portion of HUT. Similar results have been found by other groups, who
often examined just the early response to tilt. For example, Furlan et al. [56] reported that vasovagal
syncope patients experience higher heart rates during the second minute of tilt compared to healthy

controls. Marangoni et al. [119] observed a similar HR difference but during all stages of the tilted
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portion of the test. In contrast to these examples, Kochiadakis et al. [99] found that patients previously
diagnosed with vasovagal syncope experience lower HR during the 4 minutes after tilt than controls;
however, the predictive analysis was confounded by the fact that 40% of these patients were tilt-negative
for their test. As a second counter-example, Novak et al. [140] showed that during the same period, HR
is lower among tilt-positive vasodepressive syncope patients than either controls or tilt-negative syncopal
patients; however, this finding was probably influenced by the fact that the HUT-positive patients under

study happened to have significantly lower supine HR than the controls.

Attempts to examine the HR response within subsets of the syncopal population have led to interesting
results. The vasodepressive syncope patients under study by Novak et al. [140] were subdivided into two
groups: those who fainted during the first 25 minutes, and those who fainted after an isoproterenol
infusion after 25 minutes. The study found that early fainters have lower heart rates during the first four
minutes after tilt, as well as during the supine baseline recording, as compared to the late fainters or
to controls. Sumiyoshi et al. [198] divided their vasovagal syncope patients similarly, using 15 minutes
as the cutoff rather than 25. They then calculated the HR increase upon tilt by subtracting baseline
HR from the highest HR observed in the first 5 minutes after tilt. In this manner, early fainters (< 15
minutes) were found to have higher HR increases than patients who maintained consciousness throughout
the test. These findings do not reinforce one another but they do support the hypothesis that the fainting

population is heterogeneous.

Finally, the variance and kurtosis of HR have been considered for their predictive value [137]. Kurtosis,

which reflects the convexity of a histogram, is calculated as

n —4
Zz’:l (Xi - X)
not

by = , (3.3)

where n represents the number of HR data points X;, with standard deviation o.

The several relevant HR analyses found in the literature are summarised in Table 3.1.

3.4.3 Heart Rate Variability

Heart rate variability (HRV) is a measure of the beat-to-beat fluctuations in HR. A normal resting heart

undergoes periodic variations in its RR interval, and the frequency spectrum of a tachogram often reveals
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Test | Parameter | Periods Mea- | Positive Test Crite- | Patient First Au-
of Interest | sured rion Group thor
T1 HR Second minute af- | Mean value is higher | 22 H+ (16+1) | Furlan [56]
ter tilt than some threshold 22 H- (20+1)
T2- | HR Last 30 s of base- | Change from baseline | 42 S+ (51 | Marangoni
T6 line; five 30-s peri- | in bpm is greater than | £+20) [119]
ods starting 3 min | some threshold (approx- | 95 S— (52+19)
after tilt & ending | imately +13 bpm, de-
20 min later pending on which of the
five periods is analysed:
3, 5, 10, 15, 20)
T7 HR Last 10 min of base- | The highest rate sus- | Study 1: 70 | Mallat [116]
line; first 6 min of | tained for > 30 s is more | S+, 28 S-
tilt than 18 bpm above the | (50+£17)
baseline mean Study 2: 28
S+, 71 S-
(49+19)
T8 HR Last 8 min of base- | Mean value is below | 23 S+ (17-62) | Novak [140]
line some threshold 10 H- (18-40)
T9 HR First 4 min of tilt Mean wvalue is below | 23 S+ (17-62) | Novak [140]
some threshold 10 H- (18-40)
T10 | HR kurtosis | 10 min baseline Value is above some | 21 S+ | Naschitz
threshold (29+18), [137]
20 H- (29+8)
T11 HR variance | 10 min baseline Value is above some | 21 S+ | Naschitz
threshold (29+18), [137]
20 H- (29+8)

Table 3.1: Syncope prediction tests, based on heart rate analysis in the literature. Predictive algorithms
introduced in this chapter are identified as T1, T2, and so on, for later reference. min = minute, bpm
= Beats Per Minute, HR = Heart Rate, S = Patients with recurrent syncope, H = otherwise healthy
patients, + = HUT-positive, - = HUT-negative.

two or three peaks, at known frequencies®:

3

0.15-0.4 Hz (HF'): This variation in RR interval occurs in phase with respiration, and is known as

respiratory sinus arrhythmia (RSA). RSA reflects a cardio-deceleration during expiration (due to

vagal efferent traffic to the sinus node), and a cardio-acceleration during inspiration (due to the

sudden absence or attenuation of such parasympathetic activity).

0.04-0.15 Hz (LF): Although a peak in this range is very common, the cause of these “Mayer waves”

(also known as the “ten-second rhythm”) is less clear. They are thought to be due to a delay in

baroreflex feedback mechanisms [42] (see Section 2.3), but other possibilities exist, most notably

an oscillator in the brainstem mandated to modulate peripheral resistance. Within the LF range,

a peak near 0.1 Hz is common.

3HF, LF, and VLF are abbreviations for high-, low-, and very low frequency, respectively.
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Less than 0.04 Hz (VLF): Besides the two common peaks, there often exists a strong spectral com-
ponent below 0.04 Hz as well. The physiological origin is uncertain; for example, one possible
contributor is the influence of circadian (roughly 24-hour) rhythms. Understandably, some HRV

measurement techniques ignore this spectral contribution altogether.

In addition, spectral density at different frequencies may be regulated not only by central and peripheral
neural input, but also by complicating factors such as the ratio of beta-adrenergic to muscarinic receptor
densities in the heart [23,35,118].

There are various quantifications of HRV, using the time domain, frequency domain, or both [39]. In
1996 the Task Force of the European Society of Cardiology aimed to standardise HRV measurement [115],

and its compilation of existing techniques is often referenced in studies. Popular examples include:

e SDANN, the standard deviation of the averages of NN intervals (i.e. “normal-to-normal” intervals,
which are the RR intervals resulting from sinus node depolarisation? in all 5-minute segments of a

recording)

e pNN50, the number of pairs of adjacent NN intervals differing by more than 50 ms in the recording,

divided by the total number of NN intervals
e RMSSD, the square root of the mean of the squares of differences between adjacent NN intervals

e LF/HF ratio, the power in the low frequency range (0.04-0.15 Hz) divided by that in the high

frequency range (0.15-0.4 Hz); typically within a five-minute segment,

Heart Rate Variability and Head-Upright Tilt Table Testing

Many research groups have examined HRV behaviour during head-upright tilt table testing (HUT). It
has been shown that under these circumstances, an autoregressive method for estimating the spectral
content of the HR time series can be as effective as an FFT method [7]. Some problems may exist
with the reproducibility of time-domain HRV metrics in syncopal patients [97], but the HRV Task Force
recommended that both time- and frequency-domain methods be used regardless of the problem being
studied [115].

Numerous studies have investigated the putative link between HRV and the sympathovagal balance.
Parasympathetic blockade (for example with drugs) abolishes the HF component and diminishes the

LF component. Subsequent beta-sympathetic blockade removes the residual LF component, leading

4This depolarisation is exhibited in Figure 1.2. Beats that do not originate from the sinus node are known as “ectopics”.
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to an extremely steady heartbeat [4]. Therefore, fluctuations above 0.15 Hz are mediated purely by
the parasympathetic system, whereas lower frequency oscillations are jointly governed sympathetically
and parasympathetically. Such findings are consistent with the delays associated with the autonomic
nervous system: parasympathetic responses occur usually within a single heartbeat, whereas sympathetic
responses require up to 20 seconds; hence the sympathetic system acts as a low-pass filter. Such filtering
occurs at the sino-atrial node [19]. It should be pointed out that the clinical interpretation of the LF and

HF components is still highly controversial [45].

For this reason, HRV is probably a less straightforward measure of autonomic system activity than
plasma catecholamine concentration or sympathetic activity as measured by microneurography®. How-
ever, there exists a consensus that, in healthy individuals, HRV increases upon orthostatic stress (e.g.
HUT), whereas autonomic neuropathy (e.g., problems resulting from ageing or diabetes) curbs this HRV
increase and in fact can lead to a decrease in HRV during HUT [36,101,207]. This is an important
finding since autonomic neuropathy can contribute to orthostatic hypotension and vasovagal syncope.

(For example, in Figure 2.1, manifesting as “Autonomic failure” or “Type 3: Vasodepressor” syncope.)

Spectral Heart Rate Variability in Syncope Research

Autonomic neuropathy is merely one of the many possible causes of syncope [3], and this multifactorial
nature may be responsible for some of the apparent contradictions [190] amongst HRV analysis findings.
Upon tilting syncopal patients, HRV tends to rise in the young but to decrease in the elderly® [111,132,144,
164]; hence HRV changes cannot be correlated easily with syncope test positivity, despite studies which
argue the opposite [101]. However, consideration of the age of the patient may assist prognosis: Lipsitz et
al. [111] found that amongst young people, HUT-positive patients (fainters) experience a greater increase
in HRV than HUT-negative patients; further, Ruiz et al. [175] found that age is the major determinant of
autonomic behaviour during HUT. In summary there is a need for interpreting HRV data in the context of

the patient’s age and medical history, which together will narrow down the suspected causes of syncope.

5Microneurography involves inserting a microelectrode to study conduction in individual nerve fibres or bundles of fibres.
6The definitions of young and elderly vary from paper to paper, but generally the minimum age to qualify as elderly
ranges from about 60 [175] to 70 [111].
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3.4.4 Heart Rate Variability for Syncope Prediction

Results in the literature for HRV techniques have been conflicting, and so far no indicator has been
widely accepted for predicting syncope. Two examples of the past use of HRV in syncope prediction are

as follows:

LF: The LF spectral band was defined as 0.04-0.15 Hz; the last five minutes of baseline recording were
compared with the first five minutes after tilt. A change below a certain signed percentage was

deemed predictive of syncope [101].

LF/HF: The ranges of 0.06-0.15 Hz and 0.15-0.40 Hz were defined as LF and HF ranges respectively
(see Section 3.4.3); the first four minutes after tilt were observed. An LF/HF ratio below a certain

threshold was deemed predictive of syncope [98].

Numerous other tests of equal interest are described in Tables 3.2 and 3.3; using the aforementioned
two tests as examples (T14 and T20), the others are similarly listed. Some tests were excluded owing to
their similarity to others [59,163].

A possible shortcoming of many tests listed in this table, and the tables which follow in this chapter,
is that the heterogeneity of vasovagal syncope is not always recognised: syncopal patients are usually
represented as a single cohort, to be compared with normals. Guzmén et al. [71] examined vasovagal
syncope patients and found that those with cardioinhibitory and “mixed”” syncope experience a rise in
HRV during prolonged HUT, whereas vasodepressive patients experience a decrease. Gielerak et al. [59]
found similar results, but only for the late stages of HUT; in fact, immediately after tilt vasodepressive
patients had experienced a large rise in LF/HF. These papers may be used to support the hypothe-
sis that cardioinhibitory syncope is due to the Bezold-Jarisch reflex (involving hypersensitive cardiac
mechanoreceptors; see Section 2.3) whereas a peripheral component could be suspected in vasodepressive

syncope.

Elderly Patients

Unfortunately, analysis of elderly patients is often less fruitful than that of young patients [175], due
in part to comorbidity (simultaneity of diseases) and in part to autonomic degeneration. The elderly

suffer from comorbidity more than any other age group, so a given syncope patient is likely to have

"Recall that “cardioinhibitory” and “mixed” are terms used in the classification scheme [200] depicted in Figure 2.1.
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been diagnosed previously with other disorders which might affect his or her cardiovascular system. Few
elderly patients suffer from vasovagal syncope and no other disorder; one third of people over the age of
65 take three or more prescribed medications [3]. As to the issue of autonomic degeneration, it is known
that ageing decreases autonomic activity [3]. Hence, traditional autonomic indicators such as the LF /HF
ratio are less effective in predicting syncope results in the elderly. Ruiz et al. described how detrimental
the effects of ageing can be on traditional HRV analysis [175], since ageing lowers the spectral energies

under study.

3.4.5 Blood Pressure and Related Parameters

With few exceptions [101], most studies find that upon tilt (see Section 1.4), systolic and diastolic BP
decrease slightly in healthy subjects, yet recover within one or two minutes, heading for equilibria not
far from their supine values [9,40,53,78,87,106,119,126,127,207,229].

Some authors have looked at the product of SBP (systolic blood pressure) and HR, known as the
“rate-pressure product” (RPP). This measure of myocardial work has been found to be lower at the end
of positive tilt tests than at the end of negative tests — an RPP below 7000 mmHg/min is a reasonable
sign that the subject has fainted [185,186].

A second parameter of interest is baroreflex sensitivity. Introduced in Section 2.3, the baroreflex has
been implicated in vasovagal syncope and orthostatic hypotension [11,87,131,134,156,212]. The primary

methods to calculate baroreflex sensitivity (BRS) are as follows [148]:

Sequence technique: Measuring the regression slope for sequences of beats where spontaneous SBP

changes are coupled with similar RR-interval changes 8
Cross-correlation: Between the RR interval and SBP time series
Modulus: Of the RR-SBP transfer function, centred at 0.1 Hz
Autoregressive moving average (ARMA) model: Of the closed-loop RR-SBP transfer function
Statistical dependence: Of the RR interval on SBP fluctuations

Spectral technique (a.k.a. “a coefficient”): If Prr and Pspp are the spectral powers of RR inter-

vals and SBP, respectively, for a given frequency range (for example, the LF or the HF range) and

8This technique also permits the calculation of the Baroreflex Effectiveness Index (BEI), defined as the number of
baroreflex sequences divided by the total number of beat series in which SBP progressively increased or decreased irrespective
of RR-SBP coupling.
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a given signal duration (usually 128 to 1024 beats), then:

BRS:a:,/PRR. (3.4)
Pspp

Blood Pressure Variability

Just as HR varies periodically with time, particular peaks can be found in the spectrograms of BP as well.
However, the physiology responsible for these oscillations is only partly related to HRV. For example,
the HF component of systolic BP variability (BPV) is not likely to be autonomically related as it rises
(rather than falls) with orthostatic stress [53]; it is more probably related simply to respiratory mechanical
effects on haemodynamics [192]. Indeed, spectral analysis of systolic BP waves using an autoregressive
algorithm [155], the discrete Fourier Transform [94,140], or a more advanced, multiresolution wavelet
analysis [120,121], appears unable to dissimilate tilt-positive vasovagal syncope patients from tilt-negative
patients or controls, during supine rest or the early stages of tilt. Hence BPV seems to be less useful

than HRV for syncope prediction research.

3.4.6 Blood Pressure for Syncope Prediction

As with HR, occasional findings of differences in averaged supine BP between syncopal patients and
controls [94,140,142,163,187] are not relevant to the present work.

Very few authors note significant differences in BP between positive- and negative-testing patients
during the first few minutes after tilt. At least three exceptions exist. Marangoni et al. [119] found
that tilt-positive patients had lower mean BP (MBP) values immediately after tilt and throughout the
remainder of the test than tilt-negative patients. Second, averaging the first four minutes after tilt,
Kochiadakis et al. [99] observed lower systolic BP values in tilt-positive vasovagal syncope compared to
controls. Third, some groups [50] have found that the maximum MBP attained during the course of tilt
is higher in tilt-negative patients.

In a prospective BP study following encouraging retrospective analysis, Pitzalis et al. [165] demon-
strated that if more than 14 “blood pressure reductions” occurred in the first 15 minutes of tilt, the
patient was likely to faint (80% sensitivity, 85% specificity). (A “blood pressure reduction” was con-
sidered to occur when any heart beat’s corresponding systolic BP fell below that of the lowest reading

obtained during a supine baseline recording.) This result indicates that the change in BP from supine to
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PTT

Figure 3.2: A typical PTT measurement involves the ECG (upper, black trace) and PPG (photopleth-
symogram, the lower, red trace). In this thesis it is defined as the interval between the QRS complex
(cyan dot) and the subsequent point of maximum slope in the PPG (green dot). Alternatively, two PPG
traces taken from different sites on the body can be compared. An explanation of how these traces are
measured is provided in Section 3.3.4.

upright may be as important as the actual post-tilt BP itself.

Finally, many authors have found that syncopal patients often have lower than normal baroreflex
sensitivities [11,87,131,134,212]. A low BRS is thought to interfere with a subject’s ability to withstand
gravitational stress. (Two recent studies claim the opposite to be true [155,156], but the significance of
their results is mitigated by partial correlations among tilt test positivity, age, and resting HR.)

Following this review of BP and BRS with regards to syncope prediction, three promising noninvasive

tests are summarised in Table 3.4.

3.4.7 Pulse Transit Time

Pulse transit time (PTT) is the time taken for the pulse waveform to traverse a given path in the arterial
system. It reflects solely the speed of pulse conduction, known as pulse waveform velocity (PWV). As
an example, one of the many possible definitions of PTT is the time elapsing between the ECG QRS
complex (the onset of ventricular contraction) and the point of maximum slope in a photoplethysmogram
(PPG, from a pulse oximeter) at the finger-tip. This concept is demonstrated in Figure 3.2.

As the PWYV is dependent on blood pressure, there exists a link between PTT and BP. This relationship
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is often masked by other effects, but if those could be corrected for, PTT could be used as a potentially
more reliable alternative to continuous blood pressure readings. For nearly a century, many investigations
have attempted to quantify the BP-PTT relationship, although without unqualified success [55, 58,214].
Notwithstanding this, PTT could be an interesting parameter in the study of syncope, but it has only

been explored to a very limited extent [137].

Syncope Prediction

In the one study on the topic of PTT and syncope prediction, it was found that a high PTT standard
deviation, before or immediately after tilt, might be associated with vasovagal syncope [137]. The same
group found that the ratio of post- to pre-tilt PTT was higher among the syncopal subjects. These tests
are summarised in Table 3.5. Given the difficulties in interpreting the significance of PTT, the metric

has not yet played an important role in syncope prediction research.

3.4.8 Cerebral Perfusion Changes

NIRS has the potential to offer insight into the role of cerebral autoregulation in syncope, identified in
Section 2.2.2. One group found that after healthy elderly patients stand up, cortical oxyhaemoglobin
decreases while deoxyhaemoglobin increases [126,127]. Since this did not occur in young controls, it
may demonstrate that the regulation of cerebral oxygenation changes with age. Another study found
that middle-aged or elderly patients with sympathetic failure experience a very large (11.6 umol L)
decrease in O2Hb upon standing [78]. However, the observed O»Hb fall may have been due to an
inordinate decrease in BP, as opposed to an abnormality of cerebral autoregulation: BP fell on average
by 72 mmHg during the same interval. O;Hb undergoes its clearest changes in the final minutes prior to
syncope; for example, Szufladowicz et al.reported a consistent decrease on average 3.3 minutes prior to

syncope (standard deviation: 2.8 minutes) [203].

Syncope Prediction

In hypovolaemic young or middle-aged normal subjects, a steady decrease in O2Hb in the upright po-
sition might indicate a propensity to faint [40]. However, the cost of the instrumentation means that
NIRO parameters have not yet been studied thoroughly by many other researchers interested in syncope

prediction.
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3.5 Conclusion

A thorough literature search reveals that parameters which yield useful discriminatory information in
the study of syncope are HR, HRV, BP, BRS, PTT, and OyHb. Most techniques are currently restricted
to academic interest; besides the simple methods described in Figure 2.1, no technique has risen to a
level of universal acceptance by physicians. The next chapter will describe the use of these parameters

in automating the diagnosis of syncope in the Oxford Falls Clinic patients.
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Test | Parameter | Period(s) Mea- | Positive Test Crite- | Patient First Au-
of Interest | sured rion Group thor
T12 | VLF (0.01- | Last 8 min of base- | Value is above some | 23 S+ (17-62) | Novak [140]
0.05 Hz) line threshold 10 H- (18-40)
T13 | VLF (0.01- | First 4 min of tilt Value is above some | 23 S+ (17-62) | Novak [140]
0.05 Hz) threshold 10 H- (18-40)
Ti14 | LF (0.04- | Last 5 min of base- | Percent changeis smaller | 42 S+, 27 S—- Kouakam
0.15 Hz) line, first 5 min af- | than some threshold (16-75, [101]
ter tilt 42+18)
T15 | LF  (0.06— | First 4 min after tilt | Value is below some | 44 S+ (52+14) | Kochiadakis
0.15 Hz) threshold 20 H- (48+12) | [98]
T16 | LFnu, i.e. | Second 5 min after | Value is higher than | 40 S+, 62 S— Ruiz [175]
LF/(LF+HF) tilt some threshold (15-85,
44421)
T17 | LF/HF Last 4 min of base- | Change is negative, not | 44 S+ (52+14) | Kochiadakis
ratio, where | line, first 4 min af- | positive 20 H- (48+12) | [98]
LF = 0.06- | ter tilt
0.15 Hz
and HF =
0.15-0.40
T18 | LF/HF Second 5 min after | Value is above some | 40 S+, 62 S- Ruiz [175]
ratio, where | tilt threshold (15-85, 44+21)
LF = 0.04-
0.15 Hz
and HF =
0.15-0.4 Hz
T19 | LF/HF First 5 min after tilt | Value is below some | 15 S+ (32+14) | Morillo
ratio, where threshold 15 S— (33+13) | [132]
LF = 0.04- 14 H-, 1 H+
015  Hz (34+12)
and HF =
0.15-0.5 Hz
T20 | LF/HF First 4 min after tilt | Value is below some | 44 S+ (52+14) | Kochiadakis
ratio, where threshold 20 H- (48+12) | [9§]
LF = 0.06-
0.15 Hz
and HF =
0.15-0.40
T21 | LF/HF Last 5 min of base- | Change is downwards, | 42 S+, 27 S— Mangin
ratio, where | line, first 5 min of | not upwards (16-75, 42+18) | [117],
LF = 0.04- | tilt Kouakam
015  Hz [101]
and HF = (similar
0.15-0.4 Hz test)

Table 3.2: Syncope prediction tests, from frequency-domain heart rate variability analysis in the litera-
ture. LF = Low Frequency, LFnu = Low Frequency in Normalised Units, VLF = Very Low Frequency,
HF = High Frequency. See Table 3.1 for a guide to the other abbreviations.

41




Test | Parameter | Periods Mea- | Positive Test Crite- | Patient First Au-
of Interest | sured rion Group thor
T22 | PNN50 First 5 min after tilt | Value is above some | 15 S+ (32+14) | Morillo
threshold 15 S— (33+13) | [132]
14 H-, 1 H+
(34+12)
T23 | RMSSD Final 5 min of base- | Change is positive 17 S+, 11 S- Lippmann
line, first 5 min af- (52+20) [110]
ter tilt

Table 3.3: Syncope prediction tests, from time-domain heart rate variability analysis in the literature.
RMSSD = Root Mean Square of Successive Differences, PNN50 = Percentage of adjacent differences in
Normal-to-Normals that are greater than 50 ms. See Table 3.1 for a guide to the other abbreviations.

Test | Parameter | Periods Mea- | Positive Test Crite- | Patient First Au-
of Interest | sured rion Group thor

T24 SBP Ten minutes of | More than 14 post-tilt | 165 S—, 73 S+ | Pitzalis
baseline, first 15 | readings are lower than | (34%15) [165]
minutes after tilt the mean baseline value

T25 | BRS Last 300 beats of | Mean value is lower than | 9S4+, 1S—, 8H- | Béchir [11]
baseline some threshold (20-42, 30+6)

T26 | BRS First 300 beats af- | Mean value is lower than | 95+, 1S—, 8H- | Béchir [11]
ter tilt some threshold (20-42, 30+6)

Table 3.4: Syncope prediction tests, based on the analysis of systolic blood pressure (SBP) and sponta-
neous spectral baroreflex sensitivity (BRS) via the spectral technique. See Table 3.1 for a guide to the
other abbreviations.

Test | Parameter | Periods Mea- | Positive Test Crite- | Patient First Au-
of Interest | sured rion Group thor
T27 | PTT 10 min Dbaseline, | Percent change is above | 21 S+ | Naschitz
first 600 beats after | some threshold (29+18), [137]
tilt 20 H- (29+8)
T28 oprT 10 min baseline Value is above some | 21 S+ | Naschitz
threshold (29+18), [137]
20 H- (29+8)
T29 opTT First 600 beats af- | Value is above some | 21 S+ | Naschitz
ter tilt threshold (29+18), [137]
20 H- (29+8)

Table 3.5: Syncope prediction tests, based on the analysis of pulse transit time in the literature. PTT =
pulse transit time, o = standard deviation. See Table 3.1 for a guide to the other abbreviations
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Chapter 4

Signal Analysis for the Diagnosis of

Syncope

4.1 Introduction

Head-upright tilt table testing (HUT) of patients at the Radcliffe Infirmary Falls Clinic was introduced
in Section 1.4. The objective of this chapter is to summarise how the data were collected, introduce the
impact that tilting had on each of the data streams, describe how patients were selected or excluded for
analysis, and most importantly, present the results of the signal analysis for the diagnosis of two types
of syncope described in Figure 2.1: neurally-mediated syncope (including the sub-types of orthostatic

vasovagal syncope and carotid sinus hypersensitivity), and orthostatic hypotension.

4.2 Patient Protocol at the Falls Clinic

The Falls Clinic HUT protocol will first be described in full and then compared to the established protocols

described in Chapter 2. The procedure ran as follows:

1. The patient was asked to lie down whilst a physician applied the recording probes listed in Sec-

tion 1.4.2.
2. Once the setup was complete, at least ten minutes of quiet baseline data were recorded.

3. The patient was tilted gently to simulate standing. The mean angle of tilt was 70°, and the standard

deviation 5°. (The angle varied because frail patients preferred lower inclinations.)
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4. The upright patient’s data were observed over the next few minutes for signs of orthostatic hy-

potension (recall that this is a rapid decrease in systolic BP).

5. After this initial period, monitoring continued for signs of vasovagal syndrome (e.g. sweating or

tachycardia, after many minutes). Occasionally the physician spoke to the patient.

6. If the patient announced a need to be returned to the supine position, the test was concluded. How-
ever, if no symptoms developed after 30-45 minutes, carotid sinus massage (CSM) was performed

to test for carotid sinus hypersensitivity (CSH).

7. CSM could elicit large transient decreases in BP or HR, sometimes leading to syncope. Regardless,

following CSM, the patient was returned to the supine position.

8. For most patients, a second tilt was then executed. This tilt lasted no more than a few minutes, and
a standard mercury sphygmomanometer was used in place of the oscillometric cuff. The purpose

was to compare BP in the lying and standing positions as accurately as possible.

Owing to the variation in the angle of tilt from patient to patient, it was necessary to confirm, via a
statistical test, that the angle did not demonstrably affect the likelihood of fainting. (In at least one
other data set, the angle did have some effect [186].) Confirmation for the current database was achieved
with a Mann Whitney U value of 216 out of 384, lower than the critical value of 267. Angle was therefore
considered not to influence tilt test positivity.

The Falls Clinic protocol may be contrasted with the recently published Newcastle protocol for CSM

[93] in three different respects:

Angle of tilt: The Newcastle protocol recommends that “the patient should lie supine for a minimum
of 5 minutes” and remain supine during CSM, whereas at the Falls Clinic, CSM was initiated while
upright (70°), after being upright for at least 30 minutes. The protocol recommends performing
CSM at a tilted position only after CSM in the supine position fails, but recognises that 30% of

subjects will experience a positive response in the latter and not the former.

Length of time: The Newcastle protocol recommends 5 seconds of massage, acknowledging that “some
authors recommend continuing CSM for 10 seconds if there is no asystole after 5 seconds, but this
is not our practice”. At the Falls Clinic, each CSM lasted an average of 12 seconds (standard

deviation: 4 s).
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Post-procedure rest period: The Newcastle protocol recommends 10 minutes of supine rest following
the procedure, which in their experience “reduced neurological complication rates”. At the Falls

Clinic, a rest was granted following CSM, but it usually lasted much less than 10 minutes.

Importantly, none of these differences affected the results reported in the thesis.

4.3 The Database

The data were collected over a period of 33 months with the intention of testing approximately 100
patients. The importance of statistical power calculations for determining data set size becomes more
relevant in the design of prospective trials as follow-up work (see Section 6.6).

The epidemiology of the Falls Clinic patients is described in Figure 4.1 and Table 4.1. “Syncope” was
said to occur when the doctor felt that the patient had lost consciousness, or would have lost consciousness
within seconds of continuing the test, if the latter had not been terminated. “Presyncope” was said to
occur when a patient felt symptoms of nausea, lightheadedness, cold sweating, and/or pallor, making
continuation of the test difficult.

“Orthostatic hypotension” was diagnosed if systolic BP fell by more than 20 mmHg within approxi-
mately three minutes after head-up tilt. This was measured using a mercury sphygmomanometer, usually
as a part of Step 8 in Section 4.2. As discussed in Section 2.4.1, the diagnosis of orthostatic hypotension
is a non-trivial task. The determination of whether or not systolic BP fell by more than 20 mmHg was
necessary to ensure consistency.

“Carotid sinus hypersensitivity” was diagnosed when systolic BP fell by more than 50 mmHg within
approximately 30 seconds of CSM, concurrently with a feeling of lightheadedness. It was also diagnosed
if an asystole lasting 3 seconds or more occurred immediately following CSM. These two types of CSH
are known as vasodepressive (VCSH) and cardioinhibitory (CCSH), respectively.

Finally, “vasovagal syndrome” was diagnosed when the patient’s BP fell during prolonged HUT to
such an extent that syncope occurred or was thought to be imminent. It was also diagnosed in cases
where BP fell steadily and the patient requested that the test be terminated. The decrease in systolic
BP was between 60 and 120 mmHg, and the decrease in diastolic BP was between 30 and 100 mmHg.

A label of “Perhaps” was selected rather than “Yes” or “No” when any of the three following sources of

information conflicted: the annotated log of events compiled during HUT, the HR and BP data acquired
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Figure 4.1: Age distribution for Falls Clinic patients. Seventy-five per cent of the patients were 70 or
older, and 76% were female.

Syncope | Presyncope | Orthostatic Carotid Sinus Vasovagal
Hypotension | Hypersensitivity | Syndrome
Yes 17 47 60 24 26
Perhaps 1 8 1 10 9
No 88 44 41 47 49
N/A 0 7 4 25 16
Total 106 106 106 106 106

Table 4.1: Falls Clinic patient epidemiology. N/A = Not applicable; i.e., either a test was not performed,
or data did not exist for the test.

during HUT, and the clinical summary of the HUT written at a later date in the form of a letter to the

patient’s primary care physician. Positive tests for vasovagal syndrome were more reliable than negative
y Y g

tests, since in a number of cases the tilt test was halted prior to the recommended 40 minutes.

4.4 Preliminary Analysis

The database of signals demonstrates the different ways in which they vary in response to the cardiovas-

cular challenge of HUT. The purpose of this section is to introduce as simply as possible the trends seen

in the data streams.
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Figure 4.2: A plot of systolic blood pressure (A) and heart rate (B) for a patient suffering from both
vasovagal syndrome and orthostatic hypotension, undergoing head-upright tilt table testing. The left
vertical line indicates the time of tilt, while the right vertical line demarcates the return to the supine
position. Blue circles represent BP and HR measurements from the oscillometric cuff.

4.4.1 Heart Rate and Blood Pressure

An example of HR and systolic BP for one patient is presented in Figure 4.2. After a baseline recording
of approximately 22 minutes, the patient was tilted; immediately, a rise in HR was observed, but as
described in Section 3.4, this is quite normal. However, the simultaneous decrease in systolic BP of more
than 20 mmHg, accompanied by symptoms of light-headedness, demonstrated that the patient suffered
from orthostatic hypotension. The BP recovered in less than two minutes to its baseline value, so the
test continued, in an effort to diagnose comorbid syndromes. Less than ten minutes later, the BP began
to decrease again, but this time more gradually. Eventually, approximately 55 minutes after the start of
the recording, the unchecked descent in BP led to a form of cardiovascular collapse: HR plummeted and
the patient reported feeling as though she would faint. Out of concern, the angle of the tilt table was
returned to 0° — whereupon HR was immediately restored to a stable value near its baseline figure, and
BP commenced a monoexponential recovery lasting several minutes. The physician in charge of the test

diagnosed the patient not only with orthostatic hypotension but also with vasovagal syndrome.

For comparison, a second example is presented in Figure 4.3. As can be seen by the response of BP to
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Figure 4.3: A plot of systolic blood pressure (A) and heart rate (B) for a patient with vasovagal syndrome
undergoing head-upright tilt table testing. See the legend in Figure 4.2.

the first few minutes of tilt, this patient did not suffer from orthostatic hypotension. A second difference
is that the BP remained steady for the first 30 minutes of tilt, before beginning its descent. A third
difference is that HR did not decrease appreciably during syncope. Despite these differences, this patient
was diagnosed with vasovagal syndrome as in the previous case.

Finally, asystoles of more than 3 seconds were rare in the data set, manifested in only three patients

undergoing CSM, and in one patient as a result from prolonged HUT.

4.4.2 Arterial Oxygen Saturation

The supine values of arterial oxygen saturation (SaQ;) were similar for all patients, usually lying in the
range of 90-100%. The effect of tilt on SaO, was imperceivable, and upon prolonged tilt SaO, did not
change. However, as depicted in Figure 4.4A, some symptomatic patients experienced a sharp decrease
in SaOs during syncope. Such sharp decreases were never preceded by a premonitory gradual fall.

The raw infrared attenuation signal from the pulse oximeter was expected to be of more interest, as it
allows the calculation of pulse transit time (PTT). However, PTT in the supine position was similar for

all patients (approximately 250-350 ms), regardless of diagnosis. Furthermore, although PTT sometimes
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Figure 4.4: A plot of arterial oxygen saturation (SaO2) (A) and pulse transit time (B), during head-up
tilt testing of a patient with vasovagal syndrome. Vertical blue lines indicate the times of the tilt and the
return to the supine position. Note the lack of change on tilt, followed by a precipitous change at the
time of syncope (soon after 50 minutes).

changed on tilt (again regardless of diagnosis), the effect of tilt on PTT was often negligible. An example
of this behaviour is seen in Figure 4.4B: the increase in PTT just prior to syncope mirrors the fall in BP

which occurs at this time, but no earlier trends are discernible.

4.4.3 Near-Infrared Spectroscopy

An example of NIRS data for one patient is presented in Figure 4.5; the BP and HR of this patient were
illustrated previously in Figure 4.3. The NIRS parameters remained relatively unchanged for most of
HUT; yet, about 38 minutes into tilt, when the patient very suddenly lost postural tone and became
unresponsive, the NIRO plots reflect this event (as postulated in Section 3.3.5). Figure 4.5 shows rapid
decreases in TOI, THI, and OoHb concomitant with the BP collapse discernible in Figure 4.3. At this

point the test was concluded, and the physician diagnosed the patient with vasovagal syndrome.

The autoregulatory curve for this patient is shown in Figure 4.6, with a cubic polynomial fit in
black. During the course of HUT, this hypertensive patient’s cerebral autoregulation changed from

coping with high BP (upper right) to reach the flatter, more “normal” region of the curve (centre).
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Chromophore | Vasovagal Patients | Non-vasovagal patients
O2Hb +0.42 + 3.11 -0.19 £ 1.76
HHb +0.67 £ 1.00 +0.48 £ 0.85
CtOx -0.01 + 0.27 +0.05 + 0.18
TOI -0.61 +1.44 -0.58 + 1.26
THI +0.41 £ 1.10 +0.30 £ 1.74

Table 4.2: The change in NIRO parameters immediately following tilt. Plus (minus) signs indicate an
increase (decrease) relative to the supine recording. All values are expressed in gmol 171 .

Shortly thereafter, BP and TOI both decreased sharply (lower left), as cerebral autoregulation failed to
some extent. Haemodynamics were restored to baseline state once the test was terminated.

In Chapter 3, a possible link between tilt test positivity and steady decreases in O2Hb was described.
Analysis of the Falls Clinic data provided little evidence to support this claim: only two syncopal patients
experienced a steady fall in O.Hb during prolonged tilt, and several nonvasovagal patients demonstrated
a similar trend. No obvious discriminatory patterns were perceived in the four other NIRO time series.
For each, the mean value was measured during the final two minutes of supine data, and subtracted from
the mean value measured in the first two minutes of data in the upright position. The results, given in
Table 4.2, indicate no statistical significance via a Wilcoxon rank sum test. This was not unexpected,
since the factors leading up to syncope can occur in the systemic cardiovasculature, as opposed to just
the brain. O;Hb and HHb were the parameters most sensitive to tilt, even though generalisations on

their behaviour were difficult to formulate.

4.5 Variability of Vasovagal Syncope

The importance of recognising the heterogeneity of the population under study has already been under-
lined. As demonstrated by the contrast between Figures 4.2 and 4.3, the 26 Falls Clinic patients with
vasovagal syndrome comprised a heterogeneous group: their responses to tilt involved BP increasing,
decreasing, or staying the same, and HR evolved with similar variability. The only apparent common
traits of these patients were the clinical diagnosis of vasovagal syncope and the fact that BP decreased
substantially in the late stages of prolonged tilt. Syncope occurred in about half of the patients, because
the test was often stopped seconds or perhaps minutes before syncope could occur.

Some of the VASIS criteria (see Section 2.3) can be applied only when the HR is known at the time

of syncope. Since in the Oxford Falls Clinic the tests are often ended prior to syncope, less than half
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Figure 4.5: Evolution of NIRO parameters concurrent with the traces in Figure 4.3. The data were
synchronised with that from the Software Monitor data acquisition system. O;Hb = oxyhaemoglobin,
HHb = deoxyhaemoglobin, CtOx = cytochrome oxidase (all in umol L~=!). TOI = tissue oxygenation
index, THI = total haemoglobin index (both are percentages). Blue vertical lines mark the beginning
and end of the upright portion of the tilt test.

the vasovagal syndrome group could be classified according to VASIS criteria. Instead, an attempt was
made to classify patients based on a count of the number of BP drops (each drop being regressed over
minute intervals or other durations) in the initial stages of the upright portion of HUT (various limits
were attempted, including the first 60% of the upright period, the first 15 minutes, etc.), but this test

was too sensitive to artefact in the beat-by-beat determination of BP from the Finapres data.

Finally, the sub-division of patients based on a visual inspection of the general trends in BP following
tilt was considered, by using Finapres data where they were deemed reliable, and oscillometric BP readings
where these were available. This was motivated by the following: while vasovagal syncope as a result of
HUT usually involves an apparently normal cardiovascular response to the early stages of standing or tilt,

followed by haemodynamic collapse, it has been argued that this must be differentiated from the so-called
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Figure 4.6: Autoregulatory curve for the patient in Figures 4.3 and 4.5, after downsampling the data to
0.5 Hz for clarity. TOI = tissue oxygenation index. The third-order line of best fit is indicated in black;
data from the final 40 seconds prior to syncope are plotted in red.

“dysautonomic response” to orthostatism (see Section 2.3), as the treatment for the two problems may
vary [26]. Most authors fail to make this distinction. In the current research as well, the distinction was
ignored: too great a number of patients exhibited characteristics of both classes to be categorised either
way. In other words, the clarity of the examples in Figures 4.2 and 4.3, demonstrating behaviour close
to the two extremes, was uncommon.

Hence, the problem of heterogeneity amongst the vasovagal syncope population, while mitigated

somewhat by the analysis of more than one data stream, hinders classification accuracy.

4.6 Automated Diagnosis of Syncope Using Heart Rate and
Blood Pressure

Inspection of Figure 2.1 reveals that a rule-based analysis of HR and BP can be the foundation of an

automated syncope classification algorithm, attempting to duplicate the diagnoses of the Falls Clinic

physicians. The simple rules used are given in Table 4.3 and their application to the HUT data acquired

from the patients listed in Table 4.1 is described in the sections that follow.
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Syndrome Criteria for Automated Diagnosis Patients
OH SBP decreased >20 mmHg within 3 min of tilt 104
VCSH SBP decreased >50 mmHg during CSM, with lightheadedness 60
CCSH Asystole of >3 s during CSM 71
VS RPP < 7000 mmHg beats min—! at end of HUT, or SBP decreased 63
>50 mmHg below initial post-tilt value

Table 4.3: The rules of an automated diagnosis algorithm applied to the patients of the Falls Clinic.
The number of patients analysed varied from test to test, since each test required different criteria for
inclusion. CCSH = Cardioinhibitory Carotid Sinus Hypersensitivity, VCSH = Vasodepressor Carotid
Sinus Hypersensitivity, OH = Orthostatic Hypotension, VS = Vasovagal Syndrome, CSM = Carotid
Sinus Massage, HUT = Head-upright Tilt Test, SBP = Systolic Blood Pressure, RPP = Rate Pressure
Product.

4.6.1 Orthostatic Hypotension

The results from the mercury sphygmomanometer used by the physician to diagnose orthostatic hypoten-
sion could not be saved directly to a hard disk, and hence the automated diagnosis of this disorder was
approximated by other means. The Finapres systolic BP (SBP) data recorded immediately before and
after tilt were used. To reduce the impact of sudden variations in the data owing to instrumentation

error, a five-point median filter was applied to the time series.

An estimate of supine, pre-tilt SBP was calculated as the mean of the fifteen beats recorded just before
the tilt. (The final three beats before tilt were discarded to prevent artefactual distortion.) The post-tilt
minimum SBP was set as the lowest SBP datapoint recorded during the first three minutes following
tilt. Subtracting this value from the pre-tilt SBP yielded the estimate of the maximum decrease for each

patient.

One hundred and four patients had SBP data of sufficient quality to be analysed in this manner.
Of these, only 63 (61%) were assigned the correct diagnosis. The low accuracy of the diagnoses can
be explained by two factors. First, the tilt from which the mercury sphygmomanometer readings were
attained was always different from the tilt during which the Finapres readings were recorded. It is
therefore possible that, in some patients, BP decreased more in one tilt than in the other. The second
reason is instrumentation error in the Finapres, a device which fails to meet all of the accuracy criteria
defined by the American Association of Medical Instrumentation [85,147]. For example, Figure 4.7 shows
the pre- and post-tilt values of Finapres SBP, versus those of the oscillometric brachial cuff SBP. The
spread of values around the line of identity demonstrates that the continuous BP measurements made at

the Falls Clinic are not well correlated with the oscillometric cuff BP values.
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Figure 4.7: Plot of Finapres- versus oscillometric systolic blood pressure (SBP), during the supine baseline
recording (A), and within several minutes of the tilt to the upright position (B). The Finapres SBP was
calculated by averaging the data points within 10 seconds of the oscillometric cuff reading.

4.6.2 Vasodepressive Carotid Sinus Hypersensitivity

Symptoms of lightheadedness during CSM are one of the criteria in the diagnosis of VCSH. After these
were noted by the physician, they were recorded in the database as a boolean value, since the automated

diagnosis of VCSH required this information.

The second criterion for diagnosis is a decrease in SBP of more than 50 mmHg immediately following
CSM. To evaluate this, a similar system to the automated diagnosis of orthostatic hypotension was used,
with the exceptions that the start time of CSM was used rather than the time of tilt, and 50 mmHg was

substituted for 20 mmHg.

Only 60 patients were analysed, since CSM was not performed in all patients. Of these, 54 (90%)
were assigned the correct diagnosis. In five of the “incorrect” cases, the patient experienced a decrease
in BP very close to 50 mmHg, so the physician’s estimate based on visual inspection of the SBP graph
disagreed with that of the algorithm. In the remaining incorrect case, the physician had used historical

SBP data to estimate the pre-tilt value.
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4.6.3 Cardioinhibitory Carotid Sinus Hypersensitivity

To diagnose CCSH automatically, only the RR tachogram was considered. A search was performed
for RR intervals which exceeded 3 seconds and which occurred within 30 seconds of the start time of
CSM. Uniquely among the four tests considered in this section, the automated CCSH diagnostic protocol
matched closely the physician’s own method of diagnosis.

Seventy-one patients were analysed, only three of whom were diagnosed with CCSH by the physician.

In all cases, the algorithm matched the physician’s diagnosis.

4.6.4 Vasovagal Syndrome

An automated diagnosis of vasovagal syndrome represents the most difficult challenge out of the four
tests, since the symptoms are the least quantifiable.

One study found that neurally mediated syncope is often accompanied by a decrease in rate-pressure
product (RPP) to a value below 7000 mmHg bpm [185]. Based on this finding, it was decided to
implement an algorithm which calculated RPP during the last three minutes of the upright portion of
HUT, excluding all data recorded following CSM. Vasovagal syndrome was diagnosed if the rate-pressure
product fell below 7000 mmHg bpm.

However, since HUT was often terminated prior to syncope, the RPP of patients with vasovagal
syndrome could not be expected to decrease below this threshold in all cases. Hence, a second test was
used, based on the long-term trend in BP. A benchmark BP was established as the mean systolic BP
during the last three minutes of the first five minutes of the upright portion of HUT. (The first two
minutes of the upright portion of HUT were discarded, to ignore the BP transient upon tilt.) For the
remainder of HUT, until the first CSM or the return to the supine position, a sliding thirty-beat window of
averaged systolic BP was compared to this benchmark. Patients were diagnosed with vasovagal syndrome
if at any time the window-averaged BP was more than 50 mmHg below the benchmark BP.

The second test, using BP instead of RPP, more closely matches the thought processes of the physician.
However, it is still prone to error since physicians disregard some decreases in BP as artefactual, and
such occurrences were too numerous to include as annotations in the database.

Sixty-three patients were analysed, all of whom experienced at least 30 minutes of HUT before CSM

was initiated. Fifty-three patients (84%) were diagnosed accurately. The positive and negative predictive
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values (PPV and NPV) were 0.71 and 0.94, respectively. Of the ten incorrect diagnoses, two were
thought by the physician to have vasovagal syndrome, but their BP and RPP did not decrease to the
extent required by the algorithm because the test was terminated early. The remaining eight incorrect
diagnoses were “false positives”, all caused by Finapres BP decreases which the physician deemed to be

artefactual.

4.6.5 Conclusion — Automated Diagnosis of Syncope

The results of applying the rule-based algorithm to all patients are shown in Table 4.4. As can be seen,
observing the decrease in Finapres SBP during HUT proved to be a poor method to diagnose patients
with orthostatic hypotension. This inaccuracy was thought to be due primarily to the fact that the data
known to the physician could not be made available to the algorithm, and secondarily to the limitations
of the Finapres instrumentation. For example, 32 patients without orthostatic hypotension (31% of the
total) were incorrectly diagnosed as positive for the disorder, since Finapres SBP fell by more than 20
mmHg. This implies that the Finapres device probably overestimated the transient decrease in SBP
experienced after tilt. In addition, the false-negative rate (9 patients, or 9%) was the highest of all
four syndromes under study, implying that Finapres data alone is insufficient to match the physician’s
diagnosis.

The algorithm was more accurate in the diagnosis of vasodepressive carotid sinus hypersensitivity. A
modest number of false positives and false negatives (three patients in each category) was to be expected,
since SBP during CSM sometimes fell by an amount close to the threshold of 50 mmHg. Understandably,
such cases could be interpreted in one of two ways by the clinician. However, for the remaining 90% of
patients the algorithm was accurate.

The algorithm was able to diagnose cardioinhibitory carotid sinus hypersensitivity perfectly. The
false negative rate of 0% was due to the fact that all asystolic ECGs were examined very carefully by the
physician in order to determine whether the threshold of 3.0 seconds had been crossed. The false positive
rate of 0% was due in part to the accuracy of the QRS detection algorithm developed for the present
purposes (see Appendix A).

Finally, the algorithm classified 53 patients (84% of the total of 64) correctly for having vasovagal
syndrome or not. The false negative rate was very low (2 patients), since the thresholds for a positive

diagnosis were set conservatively. For the same reason, the false-positive rate (8 patients) was high
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Syndrome | TP | TN | FP | FN | No. of Patients
OH 50% | 11% | 31% | 9% 104
VCSH 28% | 62% | 5% | 5% 60
CCSH 3% [ 97% | 0% | 0% 71
VS 32% | 52% | 13% | 3% 63

Table 4.4: The results from an automated diagnosis algorithm applied to the patients of the Falls Clinic.
The diagnosis was deemed correct when it agreed with the decision of the physician. TP = True Positive,
TN = True Negative, FP = False Positive, FN = False Negative. See Table 4.3 for other abbreviations.

compared to those for both types of CSH. However, it was still lower than the false-positive rate for
orthostatic hypotension. The implications of these findings are that vasovagal syndrome can be diagnosed
in an automated manner with a reasonable degree of accuracy; however, the fact that ten patients were

still diagnosed incorrectly implies that either additional data may be required, or the method of diagnosis

using the existing data should be improved.
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Chapter 5

Signal Processing for Syncope

Prediction: HRV

5.1 Introduction

Chapters 3 and 4 showed that HR, BP, and NIRO parameters may provide information to help to predict
syncope. Chapter 3 (Section 3.4.4) showed that HRV may also be a useful predictive indicator. The reason
it did not feature in the previous chapter is the lack of a clear clinical interpretation of HRV changes in
the context of syncope diagnosis. The aim of this chapter is to lay the foundations for developing a useful

HRV metric for syncope prediction.

5.2 The Need for Instantaneous Heart Rate Variability

One of the limitations from which most common HRV measurements suffer is the requirement of sta-
tionarity, i.e. the property that the dynamic characteristics of the analysed signal (standard deviation,
spectral energy distribution, etc.) do not vary with time. However, stationarity in cardiovascular signals
is often elusive, since even healthy cardiac dynamics exhibit transient changes [95]. As a result, “instan-
taneous HRV”, which can track beat-to-beat changes in cardiac dynamics, began to be studied during
the 1990s [125,139]. (Of course, the concept of an instantaneous rate or instantaneous variability is not
meaningful, but in the current work the term instantaneous will be used to refer to sample-by-sample

estimates of a quantity.) Examples of instantaneous measures of HRV include LF energy, HF energy, and
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LF/HF ratio, as described in Chapter 3 but computed on a sample-by-sample basis rather than being

computed for a recording lasting several minutes.

Instantaneous changes in HRV are worth investigating in the context of vasovagal syndrome because
of the instabilities of the autonomic nervous system implicated in the disorder. Since patients may faint
because of over- or under-compensations of the different neural responses, a valid question to ask is
whether patients with vasovagal syndrome exhibit an autonomic instability which might be identified by
tracking the instantaneous changes in HRV in response to the HUT stimulus. For example, this instability
could affect the variance of a measure of instantaneous HRV over a period of (perhaps) one minute.

To this end, the method of instantaneous centre frequency (ICF) was used. This relatively new
approach was pioneered by Jasson et al. [88] and is gradually becoming better known [10,95,194]. The
ICF can be defined as the first moment of area (similar to a centre of mass) in the frequency domain,
and related calculations can be used to find the ICFr and ICFgp. An important advantage of ICF
over the other measures is the independence from arbitrary frequency bounds (for example, recall that
in the calculation of LF/HF the LF- and HF regions are defined arbitrarily and do not take into account

inter-individual variation).

5.3 The Calculation of Instantaneous Centre Frequency

5.3.1 Obtaining a Spectrum Using Time-Frequency Analysis

Signals which lack stationarity can be processed with one of several time-frequency transforms: Wavelet,
Gabor, Choi-Williams, and others. Developed for quantum mechanics by Wigner [227] and introduced
to signal processing fifteen years later by Ville [222], the Wigner-Ville distribution of a function f(t) is:

W(t,w) = /oo f (t+ g) 7 (t - g) e~ dr (5.1)

—0Q

where * denotes complex conjugation. This equation provides a representation of f(¢) in the joint time-
frequency domain, and is one of the most popular time-frequency analysis methods for biological signals
[139]. After comparative evaluation with other time-frequency representations, it has been deemed to be
superior for cardiovascular data [88,95,157], and was selected for the present work. Several particular

reasons influenced the decision to use the Wigner-Ville distribution in the current work:

59



Excellent time- and frequency-domain resolution

The ability to optimize independently those two forms of resolution (explained below)

Linear phase

Efficacy in reducing artificial cross-terms

The Wigner-Ville distribution is a periodic function with period 7. Hence, to avoid aliasing, sampling
at twice the Nyquist rate is required [38]. Otherwise, the analytic signal should be used, i.e. an equivalent
signal but with all negative frequencies suppressed. Hence, in Equation 5.1, f(¢) should not represent
the original signal but rather a corresponding analytic signal. This analytic signal can be obtained easily
using the Hilbert transform, H[.]. For example, in the discrete case, where f(n) is used instead of f(¢),

this analytic signal is computed as:

f(n) = fr(n) +i H[fr(n)] (5.2)

where f.(n) is the (real) original signal and f(n) is the (complex) analytic signal.

The Wigner-Ville distribution of this finite discrete signal f(n) is given as:

Nn_1 ikm
Winm) =203 RP I+ R k) e (5.3)
k=—Ny+1

where h(k) is a normalised symmetric windowing function, which acts as a form of frequency-smoothing.
Equation 5.3 is seldom used in its pure form, and the Smoothed Pseudo Wigner-Ville Distribution (SP-

WYVD) is employed instead:

Nhfl Ng_l
N, . —2mikm
Wom) == Y B Y 9@ fn+p+ R p—k)e S (5.4)
k=—Np+1 p=7Ng+1

Here, g(p) and h(k) represent independent time and frequency smoothing of order N, and N}, respectively.
The advantage of smoothing is the removal of spurious cross-terms; in fact, spectral interference is so high
in the pure Wigner-Ville distribution that it precludes implementation in most real applications [166].
However, the smoothed version, which trades off sufficient suppression of cross-terms on the one hand with
adequate time-frequency resolution on the other, is used in many applications. A pictorial illustration of

how the SPWVD is applied to the analytic signal is shown in Figure 5.1.
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Figure 5.1: How the SPWVD operates. First, the analytic signal (red time series) is multiplied by a
complex exponential (represented as a sinusoidal wave) of a given frequency (determined by m, the point
in the time-frequency plane under consideration). The product is smoothed by an averaging window
g(p) (narrow green distribution). Finally, the window h(k) (wide green distribution) is multiplied by the
result to limit the contribution of the time series for a given point in the time-frequency plane, W(n,m).
Importantly, these two averaging operations can be adjusted (regarding the type or length of the window)
independently of one other.

The Wigner spectrum of stationary signals is simply the classical spectrum [88]; clearly no advantage
is to be gained in this case. Where the SPWVD is truly valuable is in the analysis of signals whose
spectra vary rapidly with time. For example, a linear chirp signal reduces to a string of Kronecker delta
functions in the time-frequency plane [166]. Short-time Fourier transforms (STFTs) cannot accurately
track changes in a signal’s spectrum that occur over the course of a few samples, which is a significant
limitation for many biological signals. The human nervous and cardiovascular systems are known to
modify blood pressure and cardiac contraction behaviour in just a few heart beats; hence the use of the

SPWVD is much more appropriate than the STFT with a 60-second, or even 30-second, moving window.

5.3.2 Instantaneous LF/HF Ratio

A frequency band within a temporal slice of a time-frequency representation can be summed to provide
the total spectral power in that band. For example, the LF! power at a given time can be computed as
follows:

27(0.15)
LE() = / W (£, ) oo (5.5)
27(0.04)

In a similar manner, HF(t) can be calculated, and the ratio of the two time series is an instantaneous

estimate of the LF /HF ratio:

(0.15)
f7r(0 04) W (t,w)dw

(0.40)
f7r(0 15) W )d

LF/HF(t) =

1See note on p. 32.
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This equation may be straightforwardly extended to express the LF/HF ratio of a discrete time series:

Yomemg, W(n,m)
Yomme W(n,m)’

m=mpgi

LF/HF(n) = (5.7)

where the subscripted ms refer to the upper and lower boundary indices for the LF and HF spectral

bands.

5.3.3 Instantaneous Centre Frequency

Recall from Section 5.2 that the ICF of a signal is a measure of the dominant frequency of a signal at
any point in time; in the present work it is calculated as the time-dependent frequency average (i.e. first
raw moment) of W(n,m) from Equation 5.4. In continuous time, ICF is calculated from the SPWVD

(W(t,w) in Equation 5.3) as follows:

1OF () = [0 wW (t,w)dw (5.8)
N ffooo W (t,w)dw '

and in discrete time, ICF is:

S mmemW (n, m)

m=0

S W, m)

m=0

ICF(n) = (5.9)

ICF can be calculated in other ways, without recourse to the computational complexity of the SPWVD
[27]. For example, one method to estimate the ICF of a signal z(t) [22] begins with the construction of
an in-quadrature signal y(t):

y(t) = — % x(t). (5.10)

it

where * denotes convolution. The instantaneous frequency is then found as follows:

d(tan"'(L))

ICF(#t) = ———

(5.11)

The equivalence of Equations 5.8 and 5.11 is proven in Appendix C. One limitation of the latter technique
is its inability to generate other parameters resulting from the time-frequency representation; for example

even related quantities such as ICFp (the ICF of the LF component of the tachogram) cannot be
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determined. As a result, the SPWVD method was selected for the present research.

5.3.4 Summary

Before patient data can be analysed using the SPWVD method, validation using synthetic signals is re-
quired. To represent patient data as closely as possible, the problems of uneven sampling are incorporated

into the artificial signals, and this is the subject of the next section.

5.4 Sampling Issues

Since the SPWVD works best on evenly sampled data, the (unevenly sampled) RR tachogram is resampled
using interpolation. However, this approach introduces new problems: linear interpolation, and the
alternative proposed by Berger et al. [18], each truncate higher frequencies and so cubic splines are
preferred [39]. One problem with cubic splines is the generation of unacceptable oscillations when one
RR interval is unusually longer than its predecessor; for example, as a result of asystole, as depicted in
Figure 5.2. However, asystoles are sufficiently rare, and detectable, that this does not present an obstacle.
In summary, the method of cubic splines outperforms the alternatives for the present purposes.

In the analysis of stationary signals, i.e. when the Fourier transform may be used instead of the
SPWVD, a strategy to avoid the drawbacks of interpolation is to compute the spectrum directly from the
unevenly sampled tachogram. The Lomb periodogram is an excellent candidate for this operation, since
it weights the data on a point-by-point basis rather than on a per-interval basis. The Lomb periodogram

of a time series z; is:

1 [Sites —Beostot; — ][50 — B sintult; — )]

T2 Sefwlhon) sl - 1) (5.12)

>, sin(2wt;)

m) [39]. It has been shown that the Lomb periodogram can provide a more
g 3

where 7 = tan—!(
accurate estimate of the power spectral density (PSD) of a tachogram than interpolation followed by
a regular Fourier transform [39]. However, this method does not appear to have been combined with
time-frequency analysis. Hence, the Lomb periodogram in its present form suffers from the problem of

not being able to track the changes in the frequency content of a signal on a sample-by-sample basis.

Besides uneven sampling, a second problem in data processing is whether to use heart rate or heart
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Figure 5.2: Interpolation of a heart rate event series (real data). Heart beats are indicated with vertical
blue lines, and the corresponding sample-by-sample estimates of heart rate are plotted as black crosses.
Linear and cubic-splines interpolations of the heart rate are shown in green and magenta, respectively.
A. Cubic splines are better able to track sinusoidal rhythms; note the magenta line offers a closer
approximation to the black crosses. B. However, during a four-second asystole triggered by carotid sinus
massage, the linear interpolation is clearly superior; several data points interpolated using cubic splines
are negative.

period. In the current research, heart period was preferred over heart rate, owing to the nonlinearity of

the relationship between heart rate and efferent sympathetic and parasympathetic activities [159,218].

5.5 Synthetic RR tachograms

This section will define the synthetic RR tachograms to be used in the validation of the instantaneous

HRV computation.

5.5.1 Constant LF and HF Components

An artificial tachogram was generated with simple LF and HF components that remained constant

throughout time. The properties of the time series were as follows:
e Length of 512 seconds, with a mean heart rate (HR) of 70 beats per minute
e No ectopic beats or artefacts

e LF and HF components, each modelled as a single sinusoid of 0.10 Hz or 0.25 Hz, respectively
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The equation governing the tachogram generation was:

HR =70+ Ar sin(2w frt) + Ag sin(27 fit) (5.13)

fL =0.10 HZ, fH =0.25 HZ, AL = 4, AH =3.2

where H R has units of beats per minute. The tachogram was constructed using the following algorithm:
e The heart rate was first generated at a sampling frequency of 1 kHz, using Equation 5.13

e Next, the RR interval time series was calculated (recall that heart rate is simply the inverse of RR

interval length)

e The 1-kHz RR interval time series was downsampled unevenly, such that each RR value y(7) was

separated from the next by a time A7 equal to the magnitude of its data point (i.e., AT = y(7))

The initial RR interval was set to occur at time 7 = 1 ms. The RR interval calculated at this time was
added to a moving time index, to generate the next data point y. The value of the data point was also

the next RR interval (At = y). This was repeated until the end of the time series.

5.5.2 Varying LF and HF Linearly

Next, an artificial tachogram was generated with characteristics more closely resembling patient data.
The LF and HF components of the tachogram were each modelled by a single sinusoid which evolved over
time as a result of frequency and amplitude variations. Over the 512 seconds, one frequency decreased
linearly from 0.12 Hz to 0.08 Hz, while the other increased linearly from 0.21 Hz to 0.29 Hz. Over the
same period, the amplitude of the LF (HF) component grew (receded) linearly by a factor of +67 (—40)

per cent. Thus the equation was:

HR=T0+ Ayp, SiIl(27Tth) + Ay sin(27ert) (5.14)
0.04 t 0.08 ¢ ¢ ¢
—012—- =g 0214+ -2 Y Hy A, =342 Ap=42-2-
fr =0 5 5127 fu =02+ ==y, AL =3+250, An 512

5.5.3 Varying LF and HF Nonlinearly: Test tachogram

In real tachograms, LF and HF contributions wax and wane as a result of multiple factors, rather than

changing monotonically and steadily as does the artificial tachogram generated from Equation 5.14.
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Figure 5.3: Amplitudes of the HF (solid blue line) and LF (dashed black line) components in the time
series generated from Equation 5.15.

Hence, the LF and HF amplitudes were also varied nonlinearly and more rapidly. As illustrated in
Figure 5.3, a sinusoidal modulation was chosen for both amplitudes, Ay and Ag. Frequency modulation
(involving fr, and fy) was kept the same as in Section 5.5.2. The equation governing this tachogram

was:

HR =70+ Ay, sin(27rth) + Ag sin(27ert) (5.15)
0.04 t 0.08 t
fL =0.12 — TmHZ, fH =0.21 + TEHZ,

: t t
AL =6[1405 sm(27rm)], Ap =48[1.3405 cos(ﬁwm)]

5.5.4 Varying LF and HF Nonlinearly: Training tachogram

Finally, a more variable tachogram was used to set the two SPWVD smoothing parameters N, and Ny,
to ensure that the three less complex tachograms described above could be analysed. The overall time

was reduced to 336 seconds to shorten the computations. The equation was:

HR =70+ Ay, sin(27rth) + Ag sin(27ert) (5.16)
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Figure 5.4: A 512-point Lomb periodogram of the simple signal generated from Equation 5.13. The
two peaks correspond to the LF and HF components, and the vertical blue lines mark the ranges for
calculating them (0.04-0.15 Hz and 0.15-0.4 Hz, respectively).

0.04 ¢ 0.08 ¢
=012—- —__H =021+ —_-_H
fr=0 2 3367 Jm =02+ gt
24, ift <126 2.95, if t <126
Ap = Ap =
3[1+0.2cos(et)], ift>126 2.8+ 045k, ift>126

5.6 Results from the Lomb Periodogram

The Lomb periodogram of the simplest artificial tachogram (see Equation 5.13) is shown in Figure 5.4.
HRV was calculated using the LF/HF ratio, employing bounds of 0.04-0.15 Hz for LF and 0.15-0.40 Hz

for HF. The result was an LF/HF ratio of 1.55, nearly matching the expected value of (55)? = 1.56.

Second, the Lomb periodogram of the artificial tachogram generated from Equation 5.14 is shown in
Figure 5.5. The resulting LF/HF ratio is 1.54, in reasonable agreement with the expected mean value
of 1.95 (obtained by averaging the changing LF/HF ratio over the duration of the time series). The
discrepancy is likely to reflect the difficulty which the Lomb algorithm has in adapting to changes in

LF/HF ratio.
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Figure 5.5: A 512-point Lomb periodogram of the signal generated from Equation 5.14. Each peak would
be symmetrical were it not for amplitude modulation, i.e. a variation in Ay, and Ag. For both the LF
and HF components, spectral contributions were designed to be strongest at the lower frequencies (as is
evident from the equation).

5.7 The Smoothed Pseudo Wigner-Ville Distribution

5.7.1 Choice of Smoothing Parameters N, and N,

The smoothing functions g(p) and h(k) for the SPWVD (see Section 5.3.1) can take a number of forms.

The Hamming window function was selected:

0.54 —0.46 cos (32), 0<n <N,
w(n) = (5.17)
0, otherwise.

where IV is the order of the filter, in this case either Ny or N;. Hamming windows provide a good trade-
off between accuracy and versatility. In [139], it is recommended that the size N of these windows be
chosen empirically, by visually comparing the results from various choices. This strategy was improved

by calculating the RMS (root mean square) error for various window sizes. The RMS error E quantifies
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RMS error, E

100

Figure 5.6: The effect of time and frequency smoothing filter orders (N, and N}, respectively) on RMS
error, E.

the degree of difference (error) between each of M data points, z,(t), and their expected values, x.(t):

1 M

E=\|3 ; [2o(t) — 2 ()] (5.18)

This formula was used as follows. First, z,(t) was calculated using the SPWVD for chosen values of N,
and Np, applied to the tachogram generated from Equation 5.16. Second, the RMS error was calculated
for the time series. These two steps were then repeated for new values of Ny and IV}, and the results
plotted to compare the accuracy associated with various orders of filter (see Figure 5.6). As can be seen in
the figure, at low values of IV, or Ny, insufficient smoothing occurred, so the RMS error was higher. This
was due to oscillations from spurious spectral cross-terms. At very high values of N, or Nj, too much
smoothing occurred, and the RMS error rose again, due to insufficient time and frequency resolution.

The minimum RMS error occurred with N, = 45 and Nj, = 57.
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Figure 5.7: An SPWVD time-frequency representation of the artificially generated signal described in
Equation 5.14. The first and last 20 per cent of the signal were ignored, since accurate results cannot be
produced near the edges of time series. The colour bar at right indicates power, in units of s2 Hz~! .

5.7.2 Varying LF and HF Linearly

With the smoothing windows chosen as described in the previous section, the SPWVD of the tachogram
generated from Equation 5.14 was calculated and compared with the Lomb periodogram. One step of pre-
processing was necessary: resampling to ensure evenly-spaced data points. The uneven RR intervals were
converted to evenly sampled values via cubic-splines interpolation. Since no artefacts or ectopic beats
were present in the synthetic time series, this interpolation did not suffer from any of the artefactual
effects described in Section 5.4. A sampling frequency of 3 Hz was selected as a trade-off between fast

computation and a desire to avoid aliasing.

The time-frequency distribution and a plot of the LF /HF ratio versus time are shown in Figures 5.7
and 5.8, respectively. The effects of the variation in LF and HF amplitudes and frequencies are clearly
detected by the SPWVD algorithm: i.e., changes in LF/HF ratio were tracked quite closely. Further, the
mean LF/HF ratio of 1.68 is almost identical to the expected mean LF/HF ratio of 1.69 — no longer
1.95 as in Section 5.6; the value decreases because only the middle 60 per cent of the LF/HF plot was

considered.
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Figure 5.8: The expected (black line) and actual (blue line) LF /HF ratios for the RR tachogram resulting
from Equation 5.14.

5.7.3 Varying LF and HF Nonlinearly

Finally, the test tachogram generated from Equation 5.15 was used. The graph of expected and actual
LF /HF ratios is portrayed in Figure 5.9. There exists close agreement for most of the time series; however,
when the LF/HF ratio changed abruptly near t = 250 s, the error rose to 3.6%. Note that the qualitative
features of the graph remained well preserved. The ability of the SPWVD to track ICF accurately is

demonstrated in Figure 5.10.

5.7.4 Conclusion

It has been shown that, on artificial data, the SPWVD performs better than the Lomb periodogram in
tracking changes in the frequency components of a tachogram. The former method will be applied to real

patient data in the next section; for comparison, the results of the latter method will also be presented.
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Figure 5.9: The expected (black line) and actual (blue line) LF/HF ratios for the time series generated
from Equation 5.15.
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Figure 5.10: A comparison of the expected (black line) and actual (blue line) instantaneous frequency of
the time series with nonlinearly time-varying LF and HF components.
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axis spans 50 minutes. The vertical line in the centre represents a tilt to the upright position. Despite
the logarithmic ordinate scale, burst-like activity is prominent.
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5.8 Heart Rate Variability from Patient Data — Analysis of

Normal Subjects

Data were analysed for two normal subjects aged 24 and 31, who had few artefacts and ectopic beats in
their tachograms. Detrending using a 0.02-Hz high-pass Hamming-windowed filter was still required; the
reason this was unnecessary for the artificial tachograms was that there was no change in mean heart rate
in those time series. Data were divided into 50-per-cent-overlapping segments of 500 seconds, and only
the middle 50% of each segment was used. Hence the first and last 25% of each segment were discarded —
similar to the artificial tachograms, for which the first and last 20% of the signal were discarded, as is

evident from the time axes in Figure 5.8.

The instantaneous LF/HF obtained by the SPWVD (see lower graphs in Figures 5.12, 5.13, and 5.14)
resembled graphs in the literature (an example of which is depicted in Figure 5.11), in that the ratio
tended to vary quickly and over a large range. Twofold and even fourfold variations over the course of a
few seconds have been observed in previous research [88]. Further, other authors have reported that the
majority of the burst activity in an LF/HF plot is due to sudden rises in LF power; examining LF and

HF powers individually in the present subjects confirmed that finding.

One of the possible reasons for this burst-like activity is the lack of paced breathing in the studies.
Paced breathing is respiration at prescribed intervals, and represents the only method which guarantees
that the tachogram’s HF peak falls within its “normal” range of 0.15-0.40 Hz. Without paced breathing,
the strong respiratory peak may sometimes be found near 0.15 Hz, being classified alternately as LF or

HF, which leads to an extremely variable LF/HF ratio.

The instantaneous LF/HF ratio was then averaged over five minute periods for comparison with the
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ratio calculated using the Lomb periodogram [39]. As shown in Figures 5.12 and 5.13, close agreement in
the overall trend existed. Some disagreement is to be expected: for example, the former method averaged
a quotient (the mean LF/HF in a 5-minute period), whereas the latter calculated the quotient of two
averages (the mean LF component divided by the mean HF component). Hence the nonlinearity of the

operation of division played a small role.

5.9 Heart Rate Variability from Patient Data — Analysis of

Falls Clinic Patients

5.9.1 Artefact and Ectopic Beat Removal

The young normal subjects analysed in Section 5.8 above produced smooth tachograms; usually, with
patients undergoing HUT, more rigorous pre-processing is required to remove artefacts and ectopic beats.
Despite the sensitivity of the SPWVD to artefact, the issue of artefact removal is rarely mentioned in the
literature (although some guidelines are provided by Porges et al. [159]). A new method was developed,
inspired in part by previous work in classical HRV analysis [21,37]. The first part of the procedure was the
event series analysis described in Section A.5 of Appendix A. After obvious artefacts had been corrected
in this manner, ectopic beats were identified to denote the period around them as dubious when later

reporting results. This second-pass algorithm is summarised below:

1. The RR tachogram was first interpolated using the cubic-splines method (see Section 5.7.2).

2. A search began for values of HR which deviated by more than 20% from the average of the previous

ten values (i.e., the previous 3% seconds, since the sampling frequency was 3 Hz).

3. These data points were labelled as aberrant, to reflect the fact that they were likely to be ectopic

beats.

4. Further, where two aberrant data points flanked one or two non-aberrants, the non-aberrant data
point(s) were relabelled as aberrant, since RR values are always dependent on neighbouring data

points.

5. All aberrant data points were then recalculated. Each replacement heart rate was arbitrarily chosen

to be the mean of the two nearest previous valid data points averaged with the mean of the two
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Figure 5.12: Instantaneous centre frequency (ICF) and LF/HF (Low- to high-frequency) ratio for the
first normal subject, aged 31. A: ICF, calculated from the SPWVD. B: LF/HF, calculated from the
SPWVD. C: LF/HF, calculated from the SPWVD and averaged over a five-minute sliding window (black
line), and recalculated using the Lomb periodogram in [39] (dashed red line). A comparison of parts B
and C suggests that information may be missed when time-frequency analysis is not used. T = tilt.

nearest subsequent valid data points.

6. Steps 2 through 5 were repeated until all aberrant beats were removed, or (rarely) until no further

progress could be made. Typically, only a few passes were required.

The time series resulting from this procedure was an instantaneous heart rate signal (THRS), ready for
time-frequency analysis. The LF/HF ratio was calculated for all data points using the SPWVD; however,
within the LF/HF time series, data points were discarded if their time index corresponded to, or was
adjacent to, a time index earlier labelled as aberrant, thereby ensuring that no spurious data points
remained in the final time series. This concluded the calculation of the instantaneous LF/HF ratio.
Finally, the five-minute-averaged LF/HF ratio was calculated as before, but in five-minute segments
where more than 20% of the LE/HF time series had been discarded, the calculation did not take place

and the LF/HF was left undetermined.
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Figure 5.13: ICF and LF/HF ratio for the second normal subject, aged 24. For a description and legend,
see Figure 5.12. The two small lines above the “C” each represent about 18 seconds of carotid sinus
massage.

5.9.2 Typical Example of Falls Clinic Patients

Other patients previously analysed in [39] were examined, using the artefact and ectopic beat removal

system described in Section 5.9.1 above.

A typical example of this analysis, for a 79-year-old Falls Clinic patient, can be found in Figure 5.14.
This woman suffered from vasovagal syncope, and her symptoms were completely reproduced during
the tilt test. Approximately 30 minutes after tilt, near ¢ ~ 3300s, a marked bradycardia preceded an
asystole lasting several seconds and subsequent loss of consciousness. The variations of the 5-minute
average LF/HF ratio calculated using the SPWVD method and the Lomb periodogram method show
reasonable agreement, but the data from the latter are consistently slightly lower. This is probably
due to the inability of the Lomb periodogram algorithm to deal as effectively with artefacts and ectopic
beats, which if not dealt with, can artificially increase the HF component and hence decrease LF /HF.

Unrealistically, the LF /HF ratio even decreased to zero for a short time.

76



0.4 T ,
C
¥
~ 0.2
5 ‘W‘W W\WWWW WW“”
0 l l l l l ) l
B 10 20 30 40 50 60
60 -
L C
L 40 1
S
3 20 B
2 Jalt
AN IO ol sl
10 20 30 40 50 60
C
6 |
L
I 4} E
T
-
2" TN e 7
0 1 1 1 1 1 _ 1
10 20 30 40 50 60

Time (min)

Figure 5.14: ICF and LF/HF ratio for a 79-year-old Falls Clinic patient with vasovagal syndrome. For a
description and legend, see Figure 5.12. The “C” indicates 10 seconds of carotid sinus massage, and “S”
indicates when syncope occurred.

5.10 Conclusion

This chapter has described the methods for computing an instantaneous HRV metric, based on the
SPWVD. The analysis of well-defined artificial data demonstrated that the SPWVD is able to track
rapid changes in simulated cardiac dynamics. Real patient data were used to show that the computation
of 5-minute average LF/HF ratio using the SPWVD methods gave similar results to those produced
using the Lomb periodogram. In addition, extra information was gleaned from the SPWVD analysis,
for short-term changes in LF/HF were resolved over seconds rather than minutes. The next chapter

describes how ICF was used as a parameter to predict syncope.
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Chapter 6

Signal Processing for Syncope

Prediction Early in HUT

6.1 Introduction

In this chapter, new signal analysis methods for the prediction of syncope are investigated and compared
with existing methods, previously reviewed in Section 3.4. These methods were defined as tests T1-
T29 in Tables 3.1 to 3.5. The methods were applied to data from 106 patients, previously described in
Section 4.3. For reasons given below, it was necessary to exclude a number of patients from the data set

(see Section 6.2).

6.2 Criteria for Inclusion for Analysis

6.2.1 First Inclusion Criterion: No Atrial Fibrillation

Patients with atrial fibrillation (AF) had to be excluded from HRV analysis. As explained in Section 3.4.3,
the HRV models in the literature assume that HR is modulated by sympathetic and parasympathetic
inputs to the heart. In contrast, the HR of an AF patient is known to be driven by chaotic impulses
generated by the atria themselves [82]. As a result, the RR interval time series merely represents a
(homoscedastic) stochastic process, and cannot reflect sympathovagal balance.

Various methods have been developed for the automatic detection of AF, including those using neural

networks and Markov chains [211]. For the present purposes, the method described in Appendix E was
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Figure 6.1: The RR tachogram recorded from a Falls Clinic patient experiencing cardio-respiratory
synchronisation. The frequency of oscillation corresponds to the patient’s respiration rate. Note that the
RR interval decreased by approximately 22 bpm (approximately 30%) on every third beat. bpm = beats
per minute.

used: RR interval histograms were computed for each patient, and compared with RR interval histograms
computed from an online database [60] in which experts had annotated the presence or absence of atrial
fibrillation.

Of the 106 patients, five had permanent AF, three had paroxysmal AF, and the remaining 98 (ap-

proximately 92%) were found to be entirely free of AF.

6.2.2 Second Inclusion Criterion: No Cardio-Respiratory Synchronisation

As interacting oscillatory systems, the cardiac and respiratory systems are subject to synchronisation
[100,176,178,213,230]. For two self-sustained nonlinear systems, synchronisation occurs when their basic
frequencies f1 and f» evolve to satisfy the equation nf; = mfs | n,m € N. This phenomenon manifested
itself as cardiorespiratory synchronisation (CRS) in some Falls Clinic patients; when it did so it tended
to affect large sections of an RR tachogram but rarely the entire recording. One hundred patients out of
106 were entirely or mostly clear of CRS, based on visual inspection aided by simple detection software,
which identified regions of the RR tachogram in which adjacent RR intervals consistently differed by 20%
or more. This heuristically-derived figure resulted from the observation of known cases of CRS in Falls

Clinic patient data (see Figure 6.1).
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6.2.3 Third Inclusion Criterion: Age of 65 Years or More

The importance of age in the aetiology of vasovagal syncope was discussed in Section 3.4.3. An age of 65
was taken as the lower limit to define “elderly”, on the advice of the collaborating physicians. Eighty-five

patients out of 106 were 65 or older.

6.2.4 Fourth Inclusion Criterion: A Clear Diagnosis (Positive or Negative)

of Vasovagal Syndrome

The most difficult criterion to assess was the diagnosis of vasovagal syndrome. Twenty-six patients
were diagnosed with the disorder (eighteen by use of the first method described on page 45, i.e. losing
consciousness or coming within seconds of doing so before the tilt test was terminated), and 49 patients
did not show any evidence of the problem. Five patients were diagnosed with an unrelated type of
orthostatic intolerance, such as POTS (postural orthostatic tachycardia syndrome). The remaining 26
patients either were not subjected to a long enough tilt test to be certain, or showed slight but not

convincing vasovagal symptoms.

6.2.5 Fifth Inclusion Criterion: No Orthostatic Hypotension

In Section 2.4 it was mentioned that the nature of a doctor’s investigation of syncope varies from clinic to
clinic. In fact, HUT is often recommended only after orthostatic hypotension has been excluded from the
diagnosis. For this reason, it was sometimes useful to examine the HUT response of Falls Clinic patients
without orthostatic hypotension. As will become clear later in this chapter, it was hoped that this would
clarify the prediction of vasovagal responses to tilt by excluding possible cardiovascular interference from

orthostatic hypotension. Forty-three patients did not have orthostatic hypotension.

6.2.6 Sixth Inclusion Criterion: An Appropriate NIRO Recording

Forty-five patients had NIRO data acquired at 6 Hz during supine baseline recording and around the

time of tilt. Sixty-one did not have this data.
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6.3 Applying the Inclusion Criteria

6.3.1 Data Subset A: ECG Analysis

The first subset consisted of 46 patients (18 vasovagal and 28 non-vasovagal, 8 male and 38 female) who

met the first four of the six inclusion criteria:
e No atrial fibrillation
e No cardio-respiratory synchronisation
e Age of 65 or more
e Clear diagnosis (positive or negative) of vasovagal syndrome

In addition, one patient was excluded because her ECG recording suffered from excessive amounts of
artefact. Data Subset A was used for the syncope prediction algorithms which require only ECG data:
T1-T23; and all but two of the new syncope predictors, described in Section 6.4 below.

6.3.2 Data Subset B: NIRS Analysis

The second subset consisted of 35 patients (13 vasovagal and 22 non-vasovagal, 9 male and 26 female)

who met inclusion criteria 3, 4, and 6:
e An appropriate NIRO recording
e Age of 65 or more
e Clear diagnosis (positive or negative) of vasovagal syndrome

This subset was used for the two syncope prediction algorithms which rely on cerebral recordings from

the NIRO apparatus. These tests are also described in Section 6.4 below.

6.3.3 Other Subsets

The syncope prediction tests of Tables 3.4 and 3.5, labelled T24-T29, require recordings from different
instrumentation (e.g. Finapres or PPG) in addition to complying with inclusion criteria 3 and 4. The

data subsets used for these six tests contained data from between 22 and 45 patients.
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6.4 New Syncope Predictors

This section introduces three new methods to predict syncope. Each was designed while considering the

first few minutes of data recorded after tilt.

6.4.1 Heart Rate Trend

Motivation

The Heart Rate Trend (HRT) is defined here as the result of a linear regression on the IHRS (see
Section 5.9.1) during the first few seconds or minutes after tilt. The HRT is the slope of HR for a given
duration.

The motivation for examining the HRT was to identify gradual changes in the IHRS, rather than test
whether an arbitrarily chosen threshold was crossed (e.g. 18 beats per minute higher than the supine
value, as described in Section 3.4.2) for an arbitrary duration (e.g. 10 or 30 seconds). The HR change
following tilt in elderly vasovagal patients was found to be difficult to differentiate from that measured
in elderly normal subjects, and hence a new predictor had to be investigated. The hypothesis was that
patients prone to fainting are more likely to suffer from autonomic difficulties and hence may not be able
to maintain their pulse rate (whether increased or not) when they assume the upright position. This
would manifest itself as a greater decrease in pulse rate during the early phases of tilt than what would

be expected in normal patients.

Methodology

Initially, two time periods of the THRS were chosen for the purposes of syncope prediction: from 90 to
180 seconds after tilt (P1), and from 60 to 300 seconds after tilt (P2). These times were chosen as a
compromise between accuracy and efficiency of calculation. (If the assessment period is too long, the
utility of prediction is reduced; if too short, the data are more sensitive to artefacts.) Note that the first
60 (or 90) seconds after tilt were discarded in the P1 (or P2) calculation in order to allow the THRS time
to undergo its initial rise. During the first minute or so after tilt, it is typical for the IHRS to increase
sharply as part of the natural autonomic response to standing.

Figures 6.2 and 6.3 illustrate the HRT for sample vasovagal and normal patients. As the red and

black trend lines demonstrate in these typical examples, the average HRT seems to be more negative
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Figure 6.2: Graph of HRT for a Falls Clinic patient who had a negative diagnosis of vasovagal syndrome.
The P1 and P2 trends are shown in black and red, respectively.
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Figure 6.3: Graph of HRT for Falls Clinic patient diagnosed with vasovagal syndrome. The P1 and P2
trends are shown in black and red, respectively.

with vasovagal patients than with their tilt-negative counterparts.
The time taken for the THRS to undergo its initial rise varies from person to person. Hence, a third
time period (P3) was introduced for analysis, developed using the principle of “individually-determined

time axes” [2]; i.e. the time axis of observation began at a point = seconds after tilt, as before, but rather
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Figure 6.4: Comparison of HRT measurement techniques P1 (black line) and P3 (green line). Each
is a linear regression recording a change in HR; however, the former begins 90 seconds after tilt for all

patients, whereas the latter records the rate of fall in HR after the maximum has been achieved. The blue
trace represents the raw RR tachogram, while the red line represents the low-pass filtered RR tachogram,

using a cutoff frequency of 0.04 Hz.

than setting £ = 60 or x = 90 seconds, £ was determined on a per-patient basis. Specifically, P3 was

defined to last for 90 seconds, with a start point = defined using the following algorithm:
1. Low-pass filter! the IHRS to exclude frequencies above 0.04 Hz.

2. For 180 seconds after the time of tilt, advance second by second a sliding 30-s window over the
THRS signal, computing the minimum THRS value in each case. The 30-second window with the

highest minimum IHRS is retained.
3. Define the start of P3, z, to be the midpoint of this 30-second period.

This procedure accounted for the varying rates at which pulses accelerated in response to tilt, so that in
all cases, the initial THRS rise upon tilt could be discarded, and the trend monitored thereafter.

The effect of this improvement on a particular patient is illustrated in Figure 6.4. While many patients
have completed their initial HR rise by the time P1 begins, this is not true for all patients, as is the case
in Figure 6.4. The rationale for P3 is that the start of the window, z, indicates the end of the early

autonomic adjustment to tilt for each individual.

IThis filtering is not applied to the THRS used in the calculation of ICFV (see Section 6.4.2); it is used only for the
determination of the time boundaries of P3.
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6.4.2 Instantaneous Centre Frequency Variability

This section describes a novel HRV metric, known as “ICFV” (instantaneous centre frequency variability),
to predict vasovagal syncope. ICFV is a measure of the instability of ICF over time. It is calculated as
the standard deviation of ICF over a given interval, [t1,t2]:

"2 TICF(n) —
ICFthtQ:\/ Sonzm | A;") ’“CF], 6.1)

where pjcr is the mean ICF in the interval and n; and ns are the discrete indices corresponding to t;

and t2, and N =ny —ng + 1.

Motivation

The variability of ICF was examined in an effort to identify autonomic instability, rather than assess the
relative magnitude of various spectral bands. The hypothesis was that patients who experience difficulty
in controlling their autonomic response to tilt (and hence are more prone to fainting) might have greater
variability in their ICF (i.e. have higher ICFV). The avoidance of the use of spectral bandwidth power
magnitudes was expected to provide a normalising effect to minimise the effects of ageing on HRV analysis.
In addition, ICF variations are less susceptible to the problems of non-paced respiration than say LF /HF

calculations (see Section 5.8).

Methodology

ICFV was calculated for the same three segments of the IHRS (P1, P2, and P3) as with HRT. The
original motivation for introducing the new time period P3 was provided by the ICFV analysis rather
than the HRT analysis. The intention was to identify the earliest reasonably stable period in the HR
time series following tilt in which to measure ICFV; hence the need to begin measurement as soon as the

initial HR rise had taken place.

6.4.3 Cerebral Indicators

Two NIRO-based methods were considered to derive new indicators of syncope prediction. The first
considered the tilt-induced fall in Hbgig . (Recall from Section 3.3.5 that Hbgig is the difference between

oxy- and deoxyhaemoglobin concentration changes; hence a decrease in Hbg;g is caused by oxygen de-
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mand exceeding oxygen supply to the brain.) Mean values of Hbg;x were calculated for the final two
minutes of baseline recording, and again for two minutes following the first three minutes of tilt. The
difference between these two mean values was chosen as the metric to be investigated, referred to as HDD
(haemoglobin difference drop).

The second method was based on the finding in a previous study [204] that the LF spectral energy of
O2HDb or TOI often increases in young normals on standing. For the current work, preliminary analysis
first confirmed that the oscillations of O2Hb were not correlated with those in diastolic BP. Next, OsHb
LF was calculated for two minutes of baseline recording, as well as between minutes 3 and 5 in the upright
position. The first three minutes after tilt were discarded because cerebral signals measured by NIRS
require slightly longer than the IHRS to stabilise after tilt. The ratio of these two spectral energies was
chosen as the metric to be investigated.

These two methods were chosen because it was thought that some vasovagal patients may suffer from
poor cerebral reactivity. Hence, upon tilt, poor regulation of Hbg;s and blunted OsHb LF spectral energy

increases were expected.

6.4.4 Summary

The new syncope prediction tests, described in the three previous sections, are summarised in tabular

form in Table 6.1.

6.5 Results Obtained with Existing Predictors

6.5.1 Statistical Significance

The tests described in Tables 3.1 through 3.5 were applied to the Falls Clinic patients. Table 6.2 provides
an overview of whether the statistics differed markedly between vasovagal and nonvasovagal patients. A
nonparametric test known as the Wilcoxon rank sum evaluated this difference quantitatively. Parametric
tests were avoided since not all data were normally distributed.

Out of 29 tests investigated at the 5% significance level, it is expected that approximately one to two
of the tests through random chance should yield “statistically significant” results. The p values (0.046

and 0.019) of tests T11 and T23 were below 5%, but they were not high enough to withstand for example
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Test Parameter of | Period(s) Measured Positive  Test | Patient

Interest Criterion Group
Heart rate:
HRT P1 HR slope 90-180 s after tilt Value is below | Subset A
some threshold
HRT P2 HR slope 60-300 s after tilt Value is below | Subset A
some threshold
HRT P3 HR slope An individually-calculated 90-s Value is below | Subset A
period soon after tilt some threshold
Heart rate variability:
ICFV P1 | ICFV 90-180 s after tilt Value is above | Subset A
some threshold
ICFV P2 | ICFV 60-300 s after tilt Value 1is above | Subset A
some threshold
ICFV P3 | ICFV An individually-calculated 90-s Value is above | Subset A
period soon after tilt some threshold
Cerebral perfusion changes:
HDD Hbgaig Final 2 min of baseline, Difference is below | Subset B
(OoHb — HHb) | Final 2 min of first 5 min after tilt | some threshold
LFO, LF Final 2 min of baseline, Quotient is below | Subset B

(0.04-0.15 Hz) | Final 2 min of first 5 min after tilt | some threshold

Table 6.1: New syncope prediction tests, based on heart rate trend (HRT), instantaneous centre frequency
variability (ICFV), haemoglobin difference drop (HDD), and low-frequency oxygen oscillations (LFO3).
min = minute.

a Bonferroni adjustment? to this confidence level.

Often, the lower the p value, the greater the chance that two patient groups may be classified suc-
cessfully using some threshold which lies between the two distribution medians. However, this general
rule does not always hold and it is necessary to test empirically the classification accuracy, regardless of
the p value: discriminating between two distributions using a specific classifier is not the same activity

as testing the similarity of their medians, as will be shown in the next section.

6.5.2 Classifier Design

The first of two issues to consider is the design of the classifier: given a data set acquired from vasovagal
and nonvasovagal patients, it is desired to learn from the data how to classify future patients.

A simple approach is to identify the arithmetic mean of the medians of the two patient groups as a
“threshold”, and classify future patients according to whether their data points fall above or below the
threshold. A shortcoming of this method is that, while the ideal threshold will usually lie between the

two medians, it will in general be different from their mean.

2A Bonferroni adjustment is required when multiple statistical tests are evaluated simultaneously. For example, if the
number of tests is 29, and a 95% confidence level is desired, the Bonferroni-adjusted significance level is a = 0.05/29 = 0.0017.
This is a form of what is known as “multiple-comparison correction”.
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Test | py | 0o | pin | on | Units | TR [ p value
Heart rate:
T1 75.0 | 10.8 | 76.5 | 15.7 bpm No NS
T2 6.18 | 5.57 | 6.07 | 3.82 bpm | Yes NS
T3 599 | 6.38 | 5.34 | 4.06 bpm | Yes NS
T4 6.93 | 6.04 | 6.19 | 5.12 bpm | Yes NS
T5 6.61 | 733 | 7.29 | 6.29 bpm No NS
T6 7.88 | 818 | 8.07 | 5.68 bpm No NS
T7 7.63 | 5.03 | 5.51 | 3.73 bpm | Yes NS
T8 68.2 | 9.74 | 70.3 | 14.7 bpm | Yes NS
T9 74.9 10.8 76.0 15.7 bpm | Yes NS
T10 | 4.96 | 3.47 | 6.56 | 12.9 - No NS
T11 | 9.80 | 10.5 | 3.64 | 3.35 - Yes 0.05
Heart rate variability:
T12 [ 0.936 | 1.14 | 0.636 | 1.56 s? Yes NS
T13 | 147 | 1.33 | 1.05 | 1.20 s2 Yes NS
Ti14 | 13.2 | 171 | 24.8 | 23.2 % Yes NS
T15 | 1.98 | 2.65 | 1.70 | 2.31 s2 No NS
T16 | 63.8 | 21.2 | 50.9 | 21.8 % Yes NS
T17 | 81.6 | 91.3 | 80.6 133 % No NS
T18 | 2.95 | 242 | 1.57 | 1.47 - Yes NS
T19 | 3.54 | 0.383 | 3.47 | 0.400 - No NS
T20 | 1.74 | 0.969 | 1.28 | 0.961 - No NS
T21 115 207 86.5 153 % No NS
T22 | 398 | 5.84 | 6.03 | 9.60 % No NS
T23 | -20.1 | 46.2 | 0.181 | 27.3 % No 0.02
Blood pressure and baroreflex sensitivity:
T24 712 337 690 392 - Yes NS
T25 | 7.00 | 5.06 | 4.12 | 2.26 ms No | NS (0.06)
T26 | 3.28 | 1.15 | 4.35 | 4.59 ms Yes NS
Pulse transit time:
T27 | 5.67 | 4.78 | 4.71 | 5.82 % Yes NS
T28 | 11.8 | 4.21 | 28.7 | 52.9 ms No NS
T29 | 12.7 | 447 | 26.6 | 47.3 ms No NS

Table 6.2: Wilcoxon rank sum results on 29 tests from the literature. p and o refer to the mean and
standard deviation for vasovagal (v) and non-vasovagal (n) patients in Subset A, in units from the “Units”
column (bpm = beats per minute). TR = Trend Reproduced, which is “Yes” if the relationship (> or <)
between the two us matches the published finding. p value = statistical p value returned by the Wilcoxon
rank sum test (NS = not significant, using a significance threshold of 0.05).

A second method is to examine the receiver-operator characteristic (ROC), a plot of the true positive
rate versus the false positive rate for all possible choices of threshold. This graph typically appears
similar to that shown in Figure 6.5. The black dashed line represents the “line of no discrimination”,
corresponding to a truly random predictor. This predictor is correct 50% of the time, for, as the threshold
(not shown) changes, the number of true positives rises no faster than the number of false positives. The
ROC for an ideal classifier passes through the point (0,1); i.e. a threshold can be chosen such that

the true-positive rate is 100% and the false-positive rate is 0%. Most classifiers lie between these two

88



Test | ROC Area | Sensitivity | Specificity | PPV | NPV | Accuracy
Heart rate:

T1 0.63 0.67 0.58 0.62 0.64 0.62
T2 0.51 0.00 0.00 0.00 0.00 0.00
T3 0.60 0.25 0.58 0.38 0.44 0.42
T4 0.60 0.33 0.42 0.36 0.38 0.38
T5 0.61 0.50 0.55 0.55 0.50 0.52
T6 0.51 0.00 0.18 0.00 0.14 0.09
T7 0.64 0.58 0.67 0.64 0.62 0.62
T8 0.63 0.83 0.42 0.59 0.711 0.62
T9 0.64 0.67 0.50 0.57 0.60 0.58
T10 0.61 0.42 0.75 0.62 0.56 0.58
T11 0.73 0.75 0.67 0.69 0.73 0.71
Heart rate variability:

T12 0.68 0.58 0.68 0.44 0.79 0.65
T13 0.66 0.67 0.50 0.36 0.78 0.55
T14 0.65 0.75 0.54 0.41 0.83 0.60
T15 0.54 0.58 0.46 0.32 0.72 0.50
T16 0.67 0.42 0.86 0.56 0.77 0.72
T17 0.54 0.75 0.43 0.36 0.80 0.53
T18 0.67 0.42 0.86 0.56 0.77 0.72
T19 0.54 0.17 0.32 0.10 0.47 0.28
T20 0.65 0.58 0.64 0.41 0.78 0.62
T21 0.53 0.33 0.57 0.25 0.67 0.50
T22 0.52 0.08 0.61 0.08 0.61 0.45
T23 0.74 0.58 0.71 0.47 0.80 0.68
Blood pressure and baroreflex sensitivity:

T24 0.51 0.09 0.00 0.03 0.00 0.03
T25 0.68 0.64 0.60 0.41 0.79 0.61
T26 0.62 0.40 0.60 0.40 0.60 0.52
Pulse transit time:

T27 0.59 0.43 0.00 0.18 0.00 0.14
T28 0.66 0.57 0.64 0.44 0.75 0.62
T29 0.65 0.43 0.50 0.30 0.64 0.48

Table 6.3: Leave-one-out cross-validation performance, on 29 tests from the
Area under the receiver-operator characteristic curve. Accuracy = Overall accuracy (fraction of patients
who are diagnosed correctly). PPV = Positive Predictive Value, NPV = Negative Predictive Value.

literature. ROC Area =

extremes, as shown by the blue line in the figure. The area under this line, known as the ROC area,

lies between 0 and 1 and gives a rough indication of the effectiveness of the classifier. The threshold

which maximises overall accuracy for a given classifier is that which, when plotted on the ROC, lies at

the minimum distance from the point (0,1), as shown by the red line in the figure.

6.5.3 Choice of Cross-Validation

The second issue to consider, once a classifier is chosen, is how to validate its accuracy. A common

technique is the hold-out method, whereby the data is partitioned into a training set and a (usually

89



smaller) test set. The classifier is trained using data from the former, before the “new” data from the
latter is tested as input to the classifier. The information contained in the test set data cannot be used
to train the classifier.

A second technique is called “k-fold cross-validation”, whereby the data is divided into k partitions.
A single partition is then selected to form the test set, and the remaining k — 1 partitions together form
the training set. The classifier is trained and tested as with the hold-out method. Next, a new partition
from the k possibilities is selected as the test set, and a new training set is formed from the remaining
k — 1 partitions. The process repeats a total of k times, and the average results of the k test sets are
reported.

A shortcoming of k-fold cross-validation is that each of the individual classifiers considered is trained
on a subset of the data, and hence some information is wasted. This is not a significant issue for large
data sets, but in the case of a small data set such as the Falls Clinic data investigated in this thesis, it
becomes more important. In the current work, k was set equal to n, the number of patients in the data
set, in order to maximise the amount of training data available to each classifier. This method, n-fold
cross-validation, is known more commonly as “leave-one-out cross-validation” (LOOCV).

To summarise, the technique used for cross-validation in this chapter is LOOCV, in which, repeatedly,
a patient is removed from the data set (patient i), a classifier is designed using the data from the other

n — 1 patients (the training set), and finally patient 7 is classified using this classifier.

6.5.4 Results of Cross-Validating Classifiers

Single-parameter classifiers, cross-validated using LOOCYV, were designed for tests T1-29, and the results
are given in Table 6.3. These results show that one or two trends may be identifiable using traditional
HRYV analysis techniques, but classification was mostly inaccurate. To explain the poor performance of
these tests, it should be noted that the promising results reported in the literature were attained by
applying them to patients spanning a broad range of ages, rather than restricting their application to the
elderly.

Several tests performed very poorly: for example, T2 and T24 had overall accuracies close to zero.
This phenomenon is particular to tests which have ROC areas near 0.50, i.e. tests for which the ROC
lies close to the line of no discrimination (for example, see Figure 6.6). In these cases, the appropriate

threshold is very difficult to determine, since the line of no discrimination has zero convexity, unlike for
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Figure 6.5: The receiver-operator characteristic (blue line) of an example data set. Each dot corresponds
to a different choice of threshold to separate the two patient groups. The red line indicates the minimum
distance between the curve and the point (0,1). The black dashed line is the line of no discrimination,
corresponding to a classifier which makes random guesses.

example the blue line in Figure 6.5 which approaches (0,1) more clearly. When the ROC is perturbed
during the removal of a single data point to form a test set for LOOCYV, the selected threshold moves

substantially, as demonstrated in the change from Figure 6.6 to 6.7.

6.6 Results Obtained with the New Predictors

Sample traces of the ICF for vasovagal and normal patients are shown in Figures 6.8 and 6.9. Note that
the vasovagal patient experiences a greater variability in ICF after tilt. Examples of Hbg;s during HUT
are plotted in Figures 6.10 and 6.11. The normal subject was better able to maintain the value of Hby;g
during HUT.

The tests described in Table 6.1 were applied to the Falls Clinic data, and the data are summarised
in Table 6.4. All of the ICFV tests, and one of the HRT tests, yielded statistically significant results
between the two patient groups. The results of LOOCYV, as applied in Section 6.5 above, are given in
Table 6.5.

An optimal threshold to differentiate vasovagal syndrome patients from normal subjects can be de-

termined for most of the tests. This is represented simply by the median of the n thresholds calculated
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Figure 6.6: The receiver-operator characteristic (blue line) for T2, with data from the first of the thirty
patients missing. The bottom-right end of the red line indicates the threshold point: in this case it was
calculated that patients with values of T2 above 8.2 will be classified as having vasovagal syndrome. How-
ever, not much confidence can be placed in this finding, since the area under the curve is approximately
0.50; i.e. the blue line is in all cases close to the black line.
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Figure 6.7: The receiver-operator characteristic for T2, with data from the second of the thirty patients
missing. The perturbation in the line, as compared with Figure 6.6, has caused the threshold to change
substantially: now patients with values of T2 below 6.5 will be classified as having vasovagal syndrome.
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Figure 6.8: Graph of ICF for a Falls Clinic patient with a negative diagnosis of vasovagal syndrome. The
blue line indicates the time of tilt.
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Figure 6.9: Graph of ICF for a Falls Clinic patient diagnosed with vasovagal syndrome. The blue line
indicates the time of tilt.
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Figure 6.10: Plot of Hbg;r versus time for a Falls Clinic patient with a negative diagnosis of vasovagal
syncope. Hbgig estimates the imbalance between cerebral oxygen demand and supply; since for this
patient it remains close to zero, oxygen levels in the brain remain adequate during the tilt test. The first
blue line represents a tilt to the upright position, and the second blue line represents a return to the
supine position.
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Figure 6.11: Plot of Hbg;g versus time for a Falls Clinic patient with vasovagal syncope. Note the decrease
at the time of tilt (left blue line), followed by the precipitous drop from minutes 46 through 53, prior to
syncope. Oxygen demand exceeds oxygen supply during the tilt test.
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Test | py | 0v | pn | on [ Units | p value
Heart rate:
HRT P1 | -0.77 | 3.25 0.06 1.61 bpm NS
min
HRT P2 | -0.25 | 0.77 -0.10 0.61 bpm NS
min
HRT P3 | -2.76 | 2.37 -0.95 2.12 bpm 0.01
min
Heart rate variability:
ICFV P1 | 0.064 | 0.020 | 0.048 | 0.026 Hz 0.02
ICFV P2 | 0.060 | 0.014 | 0.053 | 0.022 Hz 0.04
ICFV P3 | 0.062 | 0.023 | 0.046 | 0.023 Hz 0.01
Cerebral behaviour:
HDD -1.52 | 3.69 | -0.997 | 2.20 umol NS
L
LFO, 4.06 6.99 3.38 4.21 - NS

Table 6.4: Wilcoxon rank sum results for eight tests developed for the current research. See Table 6.2 for
a description of the symbols, and Section 6.4 for a description of the tests.

by LOOCYV. In each case, this data set is the same as that used to generate the corresponding values in

Table 6.5.

For HRT, the optimal threshold was found to be -1.94 beats/min? during P3. The classifier tested

2 over the

whether the heart rate changed at a rate faster or slower than approximately -2 beats/min
course of the time period P3. Similarly, for ICFV, the optimal threshold to differentiate vasovagal
syncope patients from normal subjects was 0.056 Hz during P3. A threshold for the NIRS parameters
was impossible to obtain owing to the lack of discrimination in these parameters.

For each of the tests, the number of patients is not large enough to consider splitting the data set
into a training and test set, to confirm the accuracy of the optimal threshold. Instead, the overall
accuracy (percentage correctly classified) and other metrics can be plotted to evaluate the behaviour of

classification as the choice of threshold varies. The plots for the best classifier, ICFV P3, are given in

Figure 6.12.

6.6.1 Discussion

From the table, it is clear that the HRT and NIRS signals are not good predictors of syncope among the
Falls Clinic patients. The new ICFV technique performed generally better than the HRT and NIRS tests
and better than the existing predictors found in the literature. The ICFV results may imply that some

elderly vasovagal patients experience a greater degree of haemodynamic instability immediately after the
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Test | ROC Area | Sensitivity | Specificity | PPV | NPV | Accuracy
Heart rate:
HRT P1 0.61 0.50 0.50 0.39 0.61 0.50
HRT P2 0.52 0.39 0.43 0.30 0.52 0.41
HRT P3 0.73 0.72 0.68 0.59 0.79 0.70
Heart rate variability:
ICFV P1 0.88 0.67 0.71 0.60 0.77 0.69
ICFV P2 0.92 0.78 0.71 0.64 0.83 0.74
ICFV P3 0.94 0.78 0.86 0.78 0.86 0.83
Cerebral perfusion changes:

HDD 0.52 0.20 0.00 0.11 0.00 0.08

LFO, 0.53 0.30 0.53 0.27 0.56 0.45

Table 6.5: Leave-one-out cross-validation performance of eight tests developed for the current research.
PPV = Positive Predictive Value, NPV = Negative Predictive Value. See Section 6.4 for a description
of the tests.
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Figure 6.12: Classification accuracy (red line), negative predictive value (blue line), and specificity (green
line) versus ICFV P3 threshold. As expected, the accuracy peaks at the optimal threshold of 0.056 Hz,
calculated as the median of the thresholds used in the leave-one-out cross-validation.

early response to tilt is complete.

The inability to classify patients using HRT represents a partial negative result. Contrary to the
hypothesis presented in Section 6.4.1, elderly patients appear to be able to maintain approximately
adequate HR in the early response to upright tilt, regardless of their propensity to faint.

The classification inaccuracies involving the NIRS data may have been due in part to instrumentation

error. For example, the change in Hbg;r on standing was not negative for all subjects, which represents an
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unexpected finding. In addition, it may be that cerebral perfusion changes during the early response to tilt
are broadly similar for vasovagal patients and nonvasovagal subjects, despite differences seen among other
orthostatic conditions in the literature such as pure autonomic failure or multiple system atrophy [40].
Since 18 patients were analysed using ICFV P3, the number of false negatives can be calculated from
Table 6.5 to be two, or less than 9%. This led to a NPV of 0.86. In contrast, the highest NPV observed
among the tests taken from the literature was 0.83 (see T14 in Table 6.3). Hence ICFV P3 outperforms
the best test previously proposed, in this data set. However, the number of false negatives is still too high
by clinical standards: recall that if HUT is aborted based on the (negative) results of the prediction, the
diagnosis of vasovagal syndrome will never be made. The patient may then be erroneously assigned an
alternate diagnosis, perhaps resulting in improper medication. The number of false negatives is reduced
to zero if the choice of threshold is lowered from 0.056 Hz to 0.033 Hz, as can be seen in Figure 6.12;
however, this occurs at the expense of overall accuracy, which is reduced to an unacceptable 0.59. At a

threshold of 0.056 Hz, the accuracy, NPV, and PPV are 0.80, 0.86, and 0.78 respectively.

6.6.2 Multi-parameter Classifier

The combination of several discriminatory parameters can in some cases yield results better than classifi-
cation based on a single parameter. Here two of the most accurate published predictors (T23 and T25 —
see Table 6.3) are combined with the two most accurate new predictors (HRT P3 and ICFV P3), in a
four-parameter classifier. The number of patients for whom all four parameters may be calculated is 40
(15 vasovagal and 25 nonvasovagal), which is reduced to 30 patients (15 patients of each type) in the

balanced data set in the analysis that follows.

A linear classifier was constructed to combine the four parameters:

4
y=ag+ Z a;T; (6.2)
i=1

where the classifier output y is intended to be positive for vasovagal syndrome patients and negative for
nonvasovagal patients, a; are the linear coefficients (weights), and z; are the four parameters. These
parameters were adjusted to have zero mean and unit variance, so that later, the relative effect of each
of the four on y could be compared by simply examining the magnitudes of a;.

To maximise the discriminatory capability of ¥y, the weights a; were set as follows. Let V and N
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represent the set of vasovagal and nonvasovagal patients, respectively, with mean feature vectors py and

pn- The covariance matrices of the two classes are

1

Yy = i T;}(Xn — ) (X" = )" (6.3)
Sy = MLN r;v(x" — ) = )T (6.4)

where My and My represent the number of points x in the vasovagal and nonvasovagal classes, respec-
tively. From these, the within-class scatter matrix [135] can be computed as a weighted sum of the class

covariance matrices:

My, My
= — —3 .
Sw i Yv + Vi N (6 5)

where M = My + My. The between-class scatter matrix Sg is the weighted covariance of the class
means:

Sp = %(uv — ) (py — )" + %(uw —w)(pn — )" (6.6)

where p is the mean of all feature vectors. A method known as canonical variates analysis (CVA) can

maximise the ratio of these two scatters, by optimising the choice of projection vectors u; in the expression

u’Spu (6.7)

u?Syu’

It can be shown [135] that the vectors which maximise Equation 6.7 are generalised eigenvectors of Sy,

and Sp, i.e. solutions of the equation
SBll = /\Swll. (6.8)

In a problem with p classes, CVA produces p — 1 eigenvectors; here, p = 2 (vasovagal vs. nonvasovagal)
so the one eigenvector produced corresponds to the single optimal projection vector for the data.
Using this technique, the five weights a; were determined 30 times, using a division into training and

test data sets that mirrored the leave-one-out methodology described earlier in this section. The plot of
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Figure 6.13: The results of a linear classifier using four input parameters: T23, T25, HRT P3, and ICFV
P3. Red crosses represent vasovagal syndrome patients and blue circles represent patients without the
syndrome. The green circle represents the test patient in a given run, who is classified correctly as not
having vasovagal syndrome.

y for an example run is given in Figure 6.13; note that 29 patients are depicted in red and blue in the
diagram, as this is the size of every training data set. (The 30th patient is green.)

In this manner the optimal weights for the linear classifier were calculated as the mean of the 30 runs,
viz. {a1,as,a3,a4} = {0.186,—0.000217, —0.251,0.821}. The average PPV, NPV, and overall accuracy
for the linear classifier were found to be 0.93, 0.88, and 0.90 respectively. These values are higher than
those achieved with the best-performing single-parameter classifiers (0.78, 0.86, and 0.83 respectively; see

Table 6.5).

6.7 Conclusion

This chapter reported on new syncope predictors, investigated in an attempt to differentiate positive from
negative tilt test results from the first few minutes of data recorded after tilting. The significance of finding
a predictor of vasovagal syncope positivity during the early stage of HUT cannot be over-emphasised.
If the test could be terminated early for some patients, the time saved would enable a greater number
of patients to undergo the procedure. At present, many patients who would benefit from HUT are not
offered the test, due to healthcare resource limitations. Thresholds for ICFV and HRT were found to be
0.056 Hz and -1.94 beats/min?, respectively. Although not all of the algorithms, tested using LOOCYV,

performed as accurately as expected, the ICFV techniques performed well. The accuracy was still less
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than 100%, but this may have been due to factors beyond the control of any algorithm, such as the expert
labels concerning which patients had vasovagal syndrome and which did not; the inherent reproducibility
problems related to HUT; instrumentation limitations, etc. Importantly, ICFV also performed better
than the methods published previously.

Four of the most predictive parameters were input to a linear classifier, in an effort to combine their
capabilities. The overall accuracy and the negative predictive value were 0.90 and 0.88 respectively.
These figures are slightly better than those of the best individual classifiers (0.83 and 0.86, respectively).

An important question to consider is whether data-driven syncope prediction of any higher accuracy
(slightly closer to 100%) is possible in such a heterogeneous population. The next two chapters will
investigate whether physiological modelling can enhance the ability of a signal analysis system to predict

syncope.
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Chapter 7

The Cause of Vasovagal Syncope

7.1 Introduction

Vasovagal syncope involves a reversal of cardiovascular tone which has puzzled researchers for decades.
Suddenly, blood pressure transitions from a stable pattern to one of dramatic collapse; an elevated heart
rate may give way to a bradycardia; plasma catecholamine levels alter markedly; systemic vasoconstriction
is replaced by abrupt vasodilation. As mentioned in Chapter 2, the trigger of this rapid withdrawal of
the sympathetic nervous system is poorly understood and hotly debated.

Prior to the development of any informed model to predict the occurrence of vasovagal syncope, the
most important physiological factors must be identified. The next section outlines the physiology required
to underpin the modelling; this is complemented by a description of the nervous system in Appendix B.
Following the physiological background is an identification of three possible syncopal mechanisms, and
the details of the pathways in each case. The purpose of this chapter is to describe these pathways in

preparation for the model development which will occur in Chapter 8.

7.2 Physiological Background

7.2.1 Genesis of Vasovagal Syncope

Many stimuli are known to evoke vasovagal syncope and other forms of neurocardiogenic syncope; the
primary causes were listed in the left column of Figure 2.4. Elements such as hypovolaemia, the sight

of blood, boredom, stuffy rooms, and prior consumption of alcohol can also act to antagonise the car-
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diovascular system to increase the likelihood of syncope [201]. The stimuli most relevant to the present
research are prolonged standing or HUT, and emotion (e.g. fear, stress, anxiety).

It is fortunate that, from a haemodynamic point of view, the effects of vasovagal syncope appear not
to depend on the type of external stimulus, whether it is emotion, pain, prolonged standing, lower body
negative pressure, or head-up tilt [90,167]. The existence of this common final pathway simplifies the
approach to modelling. Carotid sinus syndrome will be excluded for the present time as it is a form
of neurocardiogenic but not vasovagal syncope, and is believed to differ slightly in its outcome (most

notably, bradycardia is more often implicated).

7.2.2 Afferent Pathways: The “Inputs” for Vasovagal Syncope

As can be seen from Figure 2.4, the afferent (incoming) signal triggering vasovagal syncope often originates
from the central nervous system (shown specifically as the cerebral cortex) or from the peripheral nervous
system (shown as various receptors). Appendix B offers a brief outline of these two nervous systems. A
third source (not shown) is the humoral system, and these three sources comprise the three paradigms

to be considered in Section 7.3.

7.2.3 The Integration of the Vasovagal Response

It is not known precisely what role the brain plays in the vasovagal response. Several of the proposed
triggers for vasovagal syncope discussed in this chapter rely on the existence of a “Vasovagal Syncope
Centre” (VSC) in the brain, responsible for integrating inputs and initiating a vasovagal response when

necessary. Reasonable candidates for the VSC are:
e The hypothalamus
e The medulla
e The cerebrum: insular cortex, temporal lobe, anterior cingulate gyrus
e An interaction among the above

The most likely locations of a VSC are within the hypothalamus or the medulla (in particular, the
NTS) [162]. Mohrman et al. [130] state that depressor centres in the anterior hypothalamus, which can

receive signals from the cortex, activate a region within the medullar cardiovascular centres to initiate
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the vasovagal response. This is in agreement with Hainsworth et al. [90], who explain that the electrical
stimulation of a localised region of the hypothalamus elicits the characteristic pattern of bradycardia and
peripheral vasodilation. It is interesting that this stimulated region is just lateral to the “defence area”
(see Appendix B) — based on that connection, Hainsworth et al. hypothesise that the VSC is either
triggered by the defence area, or that the VSC is activated by similar emotional inputs to the defence
area but at a higher threshold [90]. These hypotheses have not been tested clinically.

Some cases of vasovagal syncope may be caused by localised seizure activity resulting from a vascular
anomaly, tumour, or other cause, within the cerebral cortex. Direct electrical stimulation of the anterior
cingulate gyrus, i.e. the cortical section of the limbic system, has been shown to produce a vasovagal
response in cats [64]. Two other particular areas of interest are the insular cortex, located between the
frontal and temporal lobes [13], and the temporal lobe itself [64].

Finally, Aaronson et al. [1] believe that a single vasomotor centre in the brainstem does not exist;
rather, control may lie in the interaction amongst the brainstem, hypothalamus, cerebral cortex, and

cerebellum. This is likely to be the case in at least some episodes of neurocardiogenic syncope.

7.2.4 Efferent Pathways: The Symptoms of Vasovagal Syncope

More is known about the efferent pathways of vasovagal syncope than its initiation and integration.
Recall from Chapter 1 that the compound term “vasovagal” refers firstly to vasodilation and secondly to
bradycardia. The vasodilation is believed to be caused by a sympathetic withdrawal, often [14] but not
necessarily [131,172] following intense sympathetic activity. Although this withdrawal causes vasodilation,
the symptoms may be confined to the muscle vasculature as opposed to that of the skin and bone, which
may even vasoconstrict [169].

On the other hand, the bradycardia is not a result of sympathetic withdrawal, being vagally mediated.
It is also known that the bradycardia presents in patients less often than the vasodilation, and it is for
this reason that vasovagal syncope is often referred to as “vasodepressor” syncope instead [167]. Since the
sympathetic and parasympathetic nervous systems have a push-pull effect on one another, the sequence
of their activities throughout the environmental stimulus is probably very important in determining
the precise nature of the symptoms [13]. Large increases in circulating catecholamines (adrenaline and
noradrenaline) have often been seen prior to syncope, and these may play several roles as well.

The symptoms associated with vasovagal syncope are extreme, and it is possible that peripheral mech-
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1 EPI

Figure 7.1: Three potential peripheral contributors to vasovagal syncope. The rectangles represent, from
left to right, receptors for parasympathetic, sympathetic, and neurohumoral inputs in a blood vessel. The
numbers correspond to the enumerated pathways in the text. ACh = acetylcholine, EPI = epinephrine,
NE = norepinephrine, NN = noncatecholamine neurohumours, minus signs (=) = presynaptic inhibition.

anisms, not just a VSC, assist in their production. In other words, perhaps the dramatic vasodilation and
bradycardia are a result not just of a centrally-mediated phenomenon, but also of end-organ hypersen-
sitivity. Benditt [13] lists three possible peripheral enhancements which may accompany the vasovagal

response (see Figure 7.1):

1. Accentuated receptor antagonism: The sympathetic mediator epinephrine acts somehow at the
heart to accentuate the parasympathetic drive towards bradycardia, as well as at peripheral blood

vessels to accentuate parasympathetically-mediated vasodilation.

2. Presynaptic feedback inhibition: Acetylcholine is known to inhibit noradrenaline release, and

could hence accentuate a vasodilation driven by sympathetic withdrawal.

3. Circulating hormones other than adrenaline and noradrenaline: These include vasoactive pep-

tides (e.g. vasoactive intestinal peptide, calcitonin gene-related peptide) and purinergic agonists
(e.g. adenosine) which have been found in increased concentrations near the time of syncope. Once
released from perivascular nerves, these hormones elicit a direct vasodilatory effect through spe-

cialised receptors, and may decrease norepinephrine release from the sympathetic nervous system.

104



7.3 Physiology of the Three Vasovagal Syncope Paradigms

7.3.1 The Bezold-Jarisch Reflex

The Bezold-Jarisch reflex is a concept which originated in 1867 from the Austrian dermatologist Albert
von Bezold and was revisited extensively in 1937 by Adolf Jarisch, Jr. In 1956, Sharpey-Schafer first
proposed that it could be responsible for vasovagal syncope [172]. Following the now famous experiments
of Oberg et al. published in 1972 [141], linking the reflex to vasovagal syncope in cats, it has been
considered the most likely cause for fainting in humans, albeit with reservations. The Bezold-Jarisch
reflex is occasionally described as the definitive component of vasovagal syncope [24, 25], although most
researchers are more circumspect.

Important to the reflex are anti-hypertensive chemoreceptors [1,169] or more likely mechanoreceptors
[13,66,96] in the left ventricle of the heart, providing feedback via unmyelinated C fibres to the medulla.
These receptors are ordinarily responsible for signalling increases in blood pressure; hence, as expected,
their activation can lead to drastic medullar measures to lower the blood pressure — notably sinus
bradycardia and/or peripheral vasodilation. (It is quite possible that the aforementioned Vasovagal
Syncope Centre plays a role here.) A summary of the reflex is illustrated in Figure 7.2.

The hypothesis proposed by Sharpey-Schafer is that prior to syncope, the cardiac left ventricle con-
tracts forcefully around a relatively small stroke volume; hence the aforementioned ventricular receptors
become activated accidentally, and the Bezold-Jarisch reflex is initiated. When this incorrect signal is
presented to the medulla, blind sympathoinhibition and parasympathetic activation ensues. Following
the resulting dramatic fall in blood pressure and/or heart rate, syncope becomes unavoidable.

The question of whether this cardiac underfilling coupled with excessive force of contraction is sufficient

to cause vasovagal syncope has been a matter of debate. Several problems exist with the hypothesis:

1. Vasovagal syncope, or at least its vasodilatory component, can occur in heart transplant patients
[49]. As the afferent pathway of the Bezold-Jarisch reflex has obviously been severed in such cases,

this is the most prevalent obstacle to accepting the reflex as the only cause of vasovagal syncope.

2. Not all episodes of vasovagal syncope are preceded by a nearly empty left ventricle, nor a high
cardiac contractility [73]. Moreover, several studies have refuted the common claim that sympathetic

activity is always heightened in the minutes prior to its eventual syncopal withdrawal [131,172].
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Figure 7.2: The Bezold-Jarisch reflex.

3. Recent experiments involving the sympathetic activation of near-empty dog hearts were unable to
initiate the Bezold-Jarisch reflex [228]. Further, owing to ethical approval limitations the reflex has

not once been demonstrated in humans as a cause for vasovagal syncope [86].

A fourth contention perhaps of less importance is the possibility of the transience of the reflex.
Hainsworth [73] states that upon initiation of the reflex, the baroreceptors would become unloaded very
quickly — the implication being that there should exist an immediate compensatory mechanism. However,
baroreceptors should not be expected to perform in such extreme hypotension: Berne et al. [20] indicate
that baroreceptors are ineffective below a certain threshold, usually a mean arterial pressure of about 60
mmHg (although this varies from subject to subject). Benditt [66] suggests that an interaction of central
and peripheral elements may disable the baroreceptors during vasovagal syncope. Hence the transience

of the effects of a Bezold-Jarisch reflex is a possible but unlikely concern.

In short, several serious issues cast doubt on the plausibility of the connection between syncope and
the Bezold-Jarisch reflex. However, the lack of a convincing alternative — coupled perhaps with the
momentum acquired during several decades — has sustained the Bezold-Jarisch reflex’s position in the

literature as the primary suspect for vasovagal syncope.
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7.3.2 Central Nervous Processing

The fact that the brain is involved in the vasovagal response is not disputed. Many healthy people
experience their only fainting episodes in life as a result of emotional or painful stimuli, such as fear
or venipuncture. The more interesting question is whether the role of the brain in syncope ends there.
In other words, must a vasovagal syncope stimulus, such as prolonged standing, extreme emotion, etc.,
affect the heart excessively and thereby initiate a Bezold-Jarisch reflex? Or can the loss of consciousness
originate from a more direct mechanism?

While the pathways of the PNS were illustrated clearly in Figure 2.4, triggers within the CNS are more
difficult to map. However, it can be expected that errors in central processing would leave a biochemical
mark in the brain. Indeed, a few centrally-released neurotransmitters, many of which have been found in
elevated concentrations prior to syncope, have been implicated in triggering or integrating the vasovagal

response in the brain:
e Serotonin

Nitric oxide

Opioids (especially endorphins)

Pancreatic polypeptide
e Vasopressin'

More generally, it has been suggested that the response of the brain to a signal generated elsewhere in
the body, or the alteration of processing by central pathways, or both, may cause vasovagal syncope
[73,90,172]. Details of most of these claims are sparse, but opioids [74] and serotonin [67] seem to be
under particular scrutiny. For example, serotonin levels increase substantially prior to vasodilation, and
serotonin blockade may curb vasodilation [67]. In addition, a decrease in cerebral perfusion, such as
occurs during prolonged tilt in some patients, may lead to a small cerebral ischaemia. This ischaemia in
turn may initiate a vasospasm [65] beginning a chain of events leading to syncope.

In either the case of neurotransmitter problems or ischaemia, a Vasovagal Syncope Centre (see Sec-
tion 7.2.3) in the brain might be triggered by cerebral neural activity, rather than by the Bezold-Jarisch

reflex. Figure 7.3 summarises the three most likely pathways.

L Although vasopressin acts as a neurotransmitter in the brain, its hormonal aspects will also be addressed in Section 7.3.3.
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Figure 7.3: The role of the putative cerebral Vasovagal Syncope Centre, examining three possible CNS
input paths. Note that only one of the three inputs (blue) would ordinarily be activated for a given
syncopal episode.

7.3.3 The Endocrine System

Arterial baroreceptors act as dampeners of sudden fluctuations in blood pressure; however, they are only
able to mitigate short-term disturbances owing to a resetting mechanism, to be described later in this
section. In this sense, they act merely as band-pass filters. For the long-term control of blood pressure
and blood volume the body relies on the endocrine system (hormones), notably vasopressin and the
outputs of the RAA (renin-angiotensin-aldosterone) system [226]. For example, plasma vasopresssin has
been found in elevated concentrations prior to vasovagal syncope [74,171]. The RAA system, used for
medium- and long-term control of arterial blood pressure [167], has recently been described as “crucial”

for preventing syncope in healthy people [3].

Vasopressin

Vasopressin, also known as ADH (antidiuretic hormone), is a peptide whose normal function is to suppress
renal water excretion. It is produced in the hypothalamus when a rise in osmolality? is detected by
specialised receptors. However, vasopressin is also produced when pressure receptor traffic decreases, i.e.
when blood pressure decreases.

In raised concentrations, usually resulting from a decrease in blood pressure, vasopressin adopts a

20smolality is defined as the concentration of osmotically active particles per kg of water. In the blood, 95% of these
particles are the ions Nat, C1-, and HCOj .
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more cardiovascular role. The hormone acts as a vasoconstrictor in most tissues, except in the brain and
heart — where it functions as a vasodilator. As a result of this inconsistency, vasopressin redistributes
blood to the two most important organs during episodes of hypovolaemia (low blood volume).

A third role of vasopressin which may be important in the context of vasovagal syncope is the resetting
of baroreceptors. The reason that baroreceptors are only useful for short-term regulation is that in the
face of long-term challenges, they are adjusted to new operating points. It is thought that in some
patients, such resetting may be responsible for initiating the vasovagal attack [86]. Indeed this process
has been shown to launch a positive feedback loop leading to rapid hypotension, during experimentation
with haemorrhage [221]. (As explained in Chapter 8, haemorrhage and prolonged standing share several
similarities.)

The resetting might be accomplished by a sudden release of endogenous opioids in the brain (see
Section 7.3.2), which has been observed during haemorrhage [133]. It may also be accomplished by
circulating vasopressin, since this hormone enhances baroreflex inhibition of the sympathetic nervous
system [52]. Indeed, high vasopressin concentrations have been observed prior to syncope [171], and the
carotid sinus baroreceptors have long been considered a possible site of the vasovagal syncope trigger
[108,223].

In summary, while vasopressin mainly serves the purpose of fluid retention in the kidneys, in higher
concentrations triggered by hypovolaemia its blood redistributive effects become evident. In addition, it

greatly enhances reflexes and in particular baroreflexes.

The Renin-Angiotensin-Aldosterone System

The kidneys play the dominant role in controlling blood volume, through the RAA system as summarised

in Figure 7.4.

Renin: Renin is an enzyme released by the kidneys under any of four conditions: low renal arterial
perfusion pressure, low delivery of sodium chloride to the kidneys, an increase in renal sympathetic
nerve activity, or an increase in circulating catecholamines. Hence, there are several ways in which

low blood volume or pressure can be sensed by the organ.

Angiotensin: Renin cleaves the plasma alpha-2-globulin “angiotensinogen”, to liberate a decapeptide

called angiotensin I. Angiotensin I is then cleaved further by an enzyme found on the the surface of
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endothelial cells: ACE (angiotensin converting enzyme). The result of this activity, which occurs

mostly in the lung blood, is an octapeptide called angiotensin II.

Aldosterone: Angiotensin II drives the release of the steroidal hormone aldosterone from the adrenal

cortex.

The two hormones angiotensin IT and aldosterone represent the primary functional products of the

RAA system. The effects of angiotensin II are to increase blood pressure through:
(a) Direct vasoconstrictor action on the vascular smooth muscle

(b) Neuromodulation to increase the impact of sympathetic nerve activity, locally at various places in

the body

(c) Stimulation of sympathetic vasoconstrictor outflow from the brainstem

(d) Suppression of any reflex bradycardia initiated from the brainstem

(e) Enhancement of Ca?t current in the heart, to increase cardiac contractility
It also increases blood volume through:

(f) Promotion of vasopressin release

(g) Inhibition of natriuresis (excreting Nat in the urine)

(h) Development of thirst

The effects of aldosterone are to bolster blood volume by retention of Na*t in the kidneys, and reabsorption
of Na¥t from several glands (e.g. salivary, sweat).

It has been proposed [220] that some patients with cardioinhibitory vasovagal syncope suffer from a
blunted activation of the RAA system upon standing. As a result, the sympathetic nervous system must
work harder to address the orthostatic challenge, and syncope results when that system eventually fails

to compensate completely.
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Figure 7.4: A summary of the RAA system. See text for the specific effects of angiotensin IT and
aldosterone. BP = blood pressure, BV = blood volume.

7.4 Conclusion

This chapter has described three possible causes of vasovagal syncope: the Bezold-Jarisch reflex, central
nervous processing, and the endocrine system. Each of these causes is a contender worthy of modelling;
unfortunately, given that the Falls Clinic patients are non-invasively monitored, there is a limit on which
pathways could be modelled with confidence. The next chapter describes the construction of a model

which can incorporate as many of the relevant parameters as possible.
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Chapter 8

Physiological Modelling

8.1 Introduction

As was discussed in Chapter 1, investigation with multiple parameters can be supported by physiological
modelling to progress beyond mere “black box” analysis. Hence, in this chapter, candidate models from
the literature are reviewed for their relevance to the prediction of orthostatic vasovagal syncope. This
is followed by a description of the model created for the current work (referred to as the Orthostasis
Model). Finally, the method used to estimate the key parameters in the model is explained and applied

to the problem of syncope prediction.

8.2 Foundations of the Physiological Model

Since the late 1960s, several groups have attempted to model the response of the human cardiovasculature
to short-term orthostasis [29,41,48,80,104,154,193] and/or lower-body negative pressure [41,77,80,128,
129,154,197]. This activity is summarised in Table 8.1. None of the models contains all of the elements
needed for the present work; during the early stages of model development it was decided to choose the
most relevant model and extend it as appropriate.

A deterministic, lumped-parameter model was chosen for the task of representing the human cardio-
vasculature. Since the aim of the latter is to monitor and control blood flow through various compartments
with different properties, a system of ordinary differential equations (ODEs) such as those provided by
most of the models in Table 8.1 is appropriate; introducing PDEs or stochastic processes would have

added an unnecessary layer of complexity. Most of the models are nonlinear, since they make use of ex-
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Principal author | Year | Purpose | Pulsatile | Reference
Orthostasis Models:
Snyder 1969 Tilt Yes [193]
Boyers 1972 Tilt No 29
Croston 1974 Tilt, LBNP Yes 41
Leonard 1979 Tilt No 104
Melchior 1992 LBNP No 128
Sud 1993 LBNP Yes 197
Melchior 1994 LBNP Yes 129
Heldt 2002 Tilt, LBNP Yes [80]
Peterson 2002 Tilt, LBNP Yes [154]
Hao 2003 LBNP Yes 7
Fink 2004 Tilt No 48
Related Models:
Beneken 1967 Blood loss Yes 16
Guyton 1967 | Long-term circulation regulation No 69
Guyton 1972 | Long-term circulation regulation No 70
Srinivasan 1972 Various No [195]
deBoer 1987 Baroreflex Yes [42]
Ursino 1994 Baroreflex No 215
Ursino 2000 Hypoxia, haemorrhage Yes 217
Ursino 2000 Cerebrovasculature N/A 219

Table 8.1: Cardiovascular models from the literature. The “Purpose” of some of the Related Models has
been simplified to relate them to the current work. N/A = Not applicable (the cerebrovascular model [219)
was validated for non-pulsatile flow but can nonetheless be connected to some pulsatile models of the
systemic vasculature).

ponential, logarithmic and sigmoidal relationships, as well as multiplying or dividing the state variables
by one other. Although nonlinearity increases complexity, it does not pose too great a computational
challenge in the present work.

The clearly defined and carefully validated Ursino models [215,217,219] were chosen to set the founda-
tions for the current work. Once these three models were combined to form a single system of equations,
the resulting model was then modified to accommodate orthostasis by adding and subtracting several
mechanisms. While doing so, the aim was to create an assembly with the following subsystems, collec-

tively referred to as the “Orthostasis Model”:
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Haemodynamics: e Lumped parameter compartments (volumes, resistances, and compliances)
Cerebrovasculature: e Primarily cerebral autoregulation

Feedback regulation: e Sympathetic and parasympathetic, afferent and efferent pathways
e Effectors

Posture: e Viscoelastic properties of smooth muscle
e Hydrostatic pressure changes
e Venous collapse

e Blood pooling in dependent areas
e Decreased compliance at high pressure

The Orthostasis Model is capable of simulating most of the cascade of the physiological response to
standing, illustrated in Figure 8.1. The diagram was created based on a literature review of the main
activities which occur as a subject stands [13,57,72,74,89,138,158,167,174,183,226]. The three green
boxes depict the main challenge which must be overcome: less blood is available for the heart to pump.
The central vertical column depicts what activities occur immediately upon standing, leading finally to
the box labelled “arterial blood pressure decreases”. The pathways in the lower left and lower right of the
diagram illustrate the response of stretch receptors. The pathways in the upper left and upper right of the
diagram represent, respectively, very fast and very slow mechanisms which provide extra compensation
to the orthostatic challenge.

While this flowchart does not encapsulate all equations in the model, it does summarise the salient
activities of interest as a subject stands up. The angiotensin II response in the upper right of the figure
(discussed in Chapter 7), and the muscular response in the upper left (not applicable in the case of passive
standing) were excluded from the Orthostasis Model for the purposes of syncope prediction.

Haemodynamics lies at the heart of the model, and an overview is presented in Figure 8.2.

8.3 The Ordinary- and Delay Differential Equations

The state space, intermediate variables, and constants of the DDE system are identified in Appendix D;
what follows is a description of how these entities are related. The present section provides the differential
equations, and the next section completes the model with expressions for the intermediate variables. The
nature of the 26 differential equations divides as follows: 2 cardiac, 10 vascular, 10 feedback, and 4

cerebral equations.
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Figure 8.1: The normal response to standing. Green boxes represent the three key challenges associated
with orthostasis; blue boxes and arrows represent causal relationships; yellow boxes and red arrows
represent the primary pathways of negative feedback; BPM = beats per minute; RAA = renin angiotensin
aldosterone; NTS = nucleus tractus solitari.

The equations for cardiac and pulmonary haemodynamics were mostly based on simple relationships

found in fluid dynamics, for instance Darcy’s Law. They are easily derived by examining Figure 8.2.
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circulation (not shown) is similar to the cerebrovascular model of Ursino.

dPra,: 1 Psv_Hs_P’ra Puev_Hu_Pra -Plev_Hl_Pra+
dt Cra Rsv Ruev Rlev
(8.2)
Pum _Hu_Pra Pm _H_Pﬂz Py, — H _Pra
Y tmy d + b h + qbout - For
Rymo Rimo Ry

In Equation 8.2, the H terms represent additional hydrostatic pressures which required careful estimation
before they were introduced, for they underpin the short-term response to passive tilt. When the pressures
were modified from zero, to simulate a tilt, they acted to decrease the blood pressure in the brain, carotid
sinus, upper body, and coronary arteries, and increase the blood pressure in the splanchnic and lower-body
circulations. These pressures were computed according to the Hydrostatic Equation: AP = pgd, where
AP is the pressure caused by a fluid column of length d and density p, and g is the acceleration due to
gravity. Hence the pressure alteration occurred at the rate of 82 mmHg per metre of vertical displacement,
where a displacement of 0 m corresponds to the HIP (hydrostatic indifference point, located near the
base of the heart). For example, this led to the adjustments listed in Table 8.2 for the 75° tilt of a

173-cm person. Each of these values can be derived by multiplying sin(75°) by the corresponding entry
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Compartment Hydrostatic change (mmHg)
Cerebral circulation -32
Carotid sinus -23
Upper body (skeletal muscle and extrasplanchnic circulation) -14
Coronary circulation -6
Splanchnic circulation 13
Lower body (skeletal muscle and extrasplanchnic circulation) 55

Table 8.2: Hydrostatic adjustments of a 173-cm patient upon 75° tilt.

in Table D.8.

8.3.2 Pressures of the Systemic Vascular System

As in the previous subsection, the equations for the pressures and flows of the systemic vasculature can

be derived by examination of Figure 8.2:

dPsa: — Fsa - P];{sum (8 3)
dt Csp + Cuep + Clep + Cump + Clmp + Chp + Cbp
where for clarity, “PRgym” is defined as:
Ps _Psv Pu _Puev Pl _F)le'v Pu _Pum'u -Pl _le'v Ph _Ph'v
PRsum = —% + £ + = + 2 + = + =L + 8.4
® Rsp Ruep Rlep Rump lep th ® ( )
dP,, 1 [ P,y — va] dP,, Fy-F
- _— |F 8.5 e 8.7
dt Chp P Ryp (8.5) dt Csa (8.7)
dev — 1 Ppp_va va P, (8 6) dea — For_Fpa (8.8)
dt  Cp | Ry R, ‘ dt Cha

Before Equations 8.12-8.16 are given, it should be noted that venous valves act as a diode, and hence

some temporary variables require definition:

Fy,y,,, = max (0,

Fiey,,. = max (0,

F,,,, = max (0,

th_

-Plev -

Psv_

H, - P,
) A o
Hl - PTa
F, = 0
Rlev UMVout max 7
Hs - Pra)
Rsv
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These temporary expressions, necessary to prevent the backwards flow of blood in the veins of the lower

body and thereby combat gravitational pooling, are incorporated into the next five differential equations:

dPsv 1 Psp - Psv dAVusv
_ _ _ 12
dt CS’U |: Rsp 8Vout dt :| (8 )
dPumv 1 Pup - Pumv dAVumv
= - Fumv N 1
dt Cumu [ Rymp o = C dt ] (8:.13)
d-lev _ 1 -Plp - -lev dAVumv
dt  Cime [ Rimp Fumvow = C— (8.14)
d-Ple'u 1 -Plp - I)le'u dAVue'v
= — Flop... — 1
dt Clev [ Rlep levout Cl dt (8 5)
dPuev 1 Plp - Puev dAVuev
= — Fueo ¢ — Lu 1
dt Cuev [ Ryep o = C dt ] (8.16)

8.3.3 Feedback Regulatory Actions

Acting upon the vasculature described in Figure 8.2 was a simple network of neural feedback. This
feedback regulation is illustrated in Figure 8.3. Most of the equations are provided in the next section;
however, the state variables will be described here. For j = {s,e,m}:

dARjP — _ARJ'IJ + ORjp dAVysy — —AVusy + 0vuse

1
dt TRjp dt TVusv (8 7)

and for the cardiac feedback,

dAT, —AT, + ory dAT, — AT, + o1y
_ _ (8.18)
dt TTs dt TTv

8.3.4 Cerebral Equations

The brain model (see Figure 8.4) is based largely on a model developed by Ursino et al. to observe the
effect that changes in systemic arterial pressure (SAP) and arterial carbon dioxide pressure (PaCO-)

induce on cerebral blood flow (CBF) and intracranial pressure (ICP) [219]. The model was simplified for
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Figure 8.3: Feedback regulation in the Orthostasis Model. P,s = carotid sinus pressure, fqp, fsp, fsh; fo
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Figure 8.4: Biomechanical schematic of the cerebrovascular system constructed by Ursino. P, = systemic
arterial pressure; q = tissue cerebral blood flow; la = large intracranial arteries; pa = pial arteries; ¢ =
capillaries; pv = proximal cerebral veins; vi = v = intracranial veins; vs = terminal intracranial veins;
R; and R, refer to the resistances to CSF formation and outflow, respectively; P;. and Cj. refer to

intracranial pressure and compliance, respectively. [219]

the present purposes, to focus on the following structures:

e Large intracranial arteries (resistance)

e Pial arterial system (resistance and compliance)

e Venous intracranial circulation (resistance and compliance)

The equations for the brain model are as follows:

AVpa _  Po = Bpa, vay — Pe
dt  Riap+ Rpa/2 Rpa/2
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dP, 1 dV,
dt Oy dt (8.20)

dTaut _ —Zaut Gaut(Qb - qn)/Qn (8 21)
dt Taut )

dPpa,
dt

Calculating requires an intermediate differential equation that does reflect directly one of the state
variables:

TC 09 ~Taut

dea _ Acpa e kc‘pa . d($002 — ma_u(;) (822)
dt kc,, 2005~ %aut dt
1t ]
This differential is then incorporated as follows:
dPpq, 1 [dVpe  dCpe
— P.—P 8.23
dt Cpab dt + dt ( 2 Pab) ( )

8.3.5 Humoral and Viscoelastic Effects

Finally, for long-term orthostasis, it is necessary to consider the effects of angiotensin-II and viscoelastic

creep:

@ _ —A2+ GA2/p'U (8 24) dVye — ~Voe + chf
dt TA2 ' dt Tovc

(8.25)

8.4 Intermediate Variables

To determine the state-space derivatives, the calculation of a number of intermediate variables is required.

8.4.1 Cardiac Variables

Stroke volume increases with atrial pressure, according to the Frank-Starling mechanism. Here this
relationship is modelled using a constant of proportionality known as cardiac effectiveness, which is
measured in ml mmHg=!. (See k, and k; below.) In addition, cardiac performance is also affected by
the load against which the heart is working. A corrective factor L is therefore needed for each half of
the heart (left and right), which is assumed to increase with the square root of arterial pressure [215].
Multiplying stroke volume by this corrective factor L and dividing it by the heart period T yields the

cardiac output (flow), Fj,.
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JERER S P> Poan, /Bsan i Py > Py,
L, = Ppa PO IR (8.26) L Psa TN (R.28)

1, otherwise 1, otherwise
L, L
= kr(Pra - ra,O)T (827) Fy = kl(-Pla - -Pla,O)T (829)
8.4.2 Miscellaneous Cardiovascular Variables
Py, — P, Pso — P,
E,=- L 8.30 F,=-2_-5 8.31
pra Rpa ( ) sa Rsa ( )
Vu = Vustatic + Vusv + Vuev + Vumv (832)

Pcsubtotal :CsaPsa + CspPsp + (Cuep + Cump)Pup + (Clep + Clmp)Hp + ChpPhp + Cumqumv .-

+ Wev + Wmv + st + Cthhv + CraPra + Cla-Pla + CpaPpa + Cppppp + vava

(8.33)
Vorain = Cpab(Ppab - ch) + Cvi (Pv - Pic) (834)
Pueu — V;E + sz - Pcsubtotal - Vbrain - Vrv - Wv - Vu - ch - %co (835)

Cuev

8.4.3 Afferent and Efferent Neural Pathways

The afferent pathway is comprised of a signal transmitted from the arterial baroreceptors to the vasomotor

centre. The frequency of this signal is given by

Pes—Pn

fab — fabmin + fal;’rcrzzizi kab (836)
1+e *ab

The effects of respiration have been incorporated in the model, by considering the frequency of the
output of the chemoreceptors and pulmonary stretch receptors (fg. and fqp, respectively). However,
since a suitable respiration signal was not recorded in most patients, these frequencies have been set to

constant values (foer, and foppn), and the pathways have not been included in Figure 8.3.
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For the sympathetic activity to the heart, peripheral resistances, and veins (j = {h, p, v} respectively),

the efferent signals are as follows:

fsj = min (fesmaz; fesoo + feso - fesooekes(wbsjfab+wcsj fac+Wpsjfaj_osj))

fab—1f
ab ab(
_ fevo +fevooe Eew

Fab—7Fabg
1+e Feo

fo

+ chfa,c - Wp’u.fap - 0'0

8.4.4 Effectors for Reflex Regulation

(8.37)

(8.38)

The differential equations for the feedback variables in Section 8.3.3 required the following intermediate

parameters, for j = {s,e,m}:

GRjP log[fsp(t - DRjP) - fesmin + ]-]a lf fsp 2 fesmin:

URjP =
0, otherwise

GV’u.jv log[fsp(t - DVujv) - fesm'in + 1]; if fsv Z fesmz'n;

OVujv =
0, otherwise
and for T:
GT; log[fsh(t - DTS) - fesmz'n + 1]; if fsh Z fesmin;

ar, =

0, otherwise

ory = Gr, fo(t — Dry)

Finally, for ™= {Rsp, Rep, Rsm; Vusv, Vuev; Vum'u; }:

™= Am + 7o
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and for heart period,

T = AT, + AT, + Ty (8.44)

8.4.5 Upper- and Lower-Body Division

Recall that « and [ refer to the upper- and lower-body divisions, respectively. For ¢ = {u,l} and

j={e,m}:

Rujpo + Rijpo

Rijp = Rijpo Rjp Rueyo Fiopo (8.45)
8.4.6 Cerebrovascular Variables
The following intermediate parameters were required in the computation of cerebral variables:
Rpay = kr (%) 2 (8.46) ® = % (8.49)
Coi (3 —1Pic 1 (8.47) Bout = R’R_i:”; do (8.50)
kcpa = % (8.48) Aco, = L oo . (8.51)

R!., if P, > 2(patient supine),
Rys = v > 2 ) (8.52)

%, otherwise (patient upright)

dVvi_ Ppab_Pv Pu_Hb_Pra

dt ~ Ry, + Rpa/2 Ry,

(8.53)

ACal, if ¢ 2 > Taut,
AC,, = ? e ‘ (8.54)

ACpq,, otherwise

200y ~Taut
(Cpan _ Agpa.) + (Cpan + Agpa )e—kcpa
ECO2 —Z®aut

1+e *cra

Cpay = (8.55)
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8.4.7 Additional Postural Effects

The progression of the tilt to the upright position, ¢r € [0, 1], is calculated as

0, if t < tseart (patient supine),

cr = tt:tf%, if tgpars < t < tenq (Moving patient upright),

1, if ¢ > tenq (patient in upright position)

(8.56)

From this, the hydrostatic pressures H; can be calculated for i = {s,u,l,b, h,c} — i.e. splanchnic, upper

body, lower body, brain, heart, and carotid sinus, respectively — as simply H; = (er)(H;r).

As the simulated patient is tilted, it is necessary to compute the time derivative of the hydrostatic

equation for blood flow to the brain:

0, if t < tseart (patient supine),
dH, Hbfinal

e P if tspart <t < tend (moving patient upright),

0, if t > tenq (patient in upright position)

Blood pooling in the lower extremities is calculated as

0, if t < tenq (patient supine or moving upright)
Vi =

tend—t

Vi = Viginal (1 —e Vi ) , if t > tenq (patient in upright position)

Venous collapse (applicable only in the upright posture [154]) is modelled as

Ryevo, if Pyey > 2 (patient supine),

Ruev =
%, otherwise (patient upright)
Rumwvo, if Pumy > 2 (patient supine),
Rumv =
2};‘%, otherwise (patient upright)
Rpyo, if P, > 2 (patient supine),
th =

2has - otherwise (patient upright)

(8.57)

(8.58)

(8.59)

(8.60)

(8.61)

Certain compliances change from a “HI” value to a “LOW” value when the pressure of the corre-

sponding compartment exceeds PNC (see Table D.8). This affects the calculation of the compartment’s
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stressed volume; for j = {s,le,lm} (splanchnic, lower extrasplanchnic, and lower muscular circulations):

v Cj Pjv, if Pjv < PNC (8 62)
jv = .
(PNC)ijLOW -+ (Pjv — PNC)ijHb otherwise

Cpabcic

Cop=5———
’» Cpap, + Cic

(8.63)

This nonlinearity in the dependent venous compliances was one of two important considerations in de-
signing the model, to accommodate the hydrostatic pressures discussed on page 116. (The second was
the behaviour of venous valves.) This characterisation of compliances is necessary to prevent orthostatic
hypotension in a normal subject: if veins were too compliant at high pressure, the entire blood volume

of the circulation would simply accumulate in the lower body.

Overall viscoelastic effects are modelled as

0, if t < tenq (patient supine or moving upright)
cho = (864)

teng—t

Voco = AVyeo (1 — € Tveo ) , if t > tenq (patient in upright position)

Additionally, viscoelastic creep in the lower muscular and lower extrasplanchnic circulations is represented

as:
V'ucf =kyvc (-lev - PNC) (865)

This allowed for a more realistic adaptation to pressure increases — by allowing the overall circulation
to compensate partially for the loss of blood volume during standing.

The peripheral pressures are calculated using Ps, as follows. For j = {s,u,[,b, h} (splanchnic, upper-
body, lower-body, cerebral, and coronary circulations):

Pj, = Py, + Hj. (8.66)

Finally, normalised plasma volume is calculated as:

_ VitV

Do 7 (8.67)
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8.4.8 The Long-term Response to Tilt

It is known that in the normal response to standing, blood volume decreases over the course of 15-40
minutes. This is due to the increased transmural pressure in the lower capillaries, driving blood out of
the vessels and into interstitial space. Negative feedback mechanisms in the body usually act to curb
the blood loss so that it does not exceed approximately 10% of the total. The physiological effects of
prolonged standing share many similarities with those of haemorrhage simply because of this decrease in
circulating blood volume [20,90]. The time-dependent blood loss V;(t) is modelled as a monoexponential
function:

Véinal = Closs Viotal (8.68) Vilt) = Vana <1 - eTVi) (8.69)
where Viotal represents the total blood volume (5 litres), Vana represents the blood lost upon long-term
standing (500 ml if ¢joss = 0.10), V;(t) represents the blood loss at time ¢, and 7y, represents the time
constant associated with the decrease (10 minutes). Although the degree of blood loss is small, it is
enough to cause syncope in the tilted patient (arterial blood pressure collapses as per Type 3 syncope in
Figure 2.1). The fact that a redistribution in blood can cause syncope is in agreement with expectations,
as even healthy subjects can lose consciousness 10 to 20 minutes after tilt [130] if no compensatory

mechanisms occur — in particular, slight muscular contractions in the legs to prevent blood pooling.

8.5 Model Validation

Of the 26 differential equations, eight contain a delay, reflecting the fact that the information generated
in one part of the body cannot arrive instantaneously at another part. Hence, strictly speaking the model

is not an ODE system but a DDE (delay differential equation) system, of the following form:

¥'(t) = £(t3®,5( 10,5t =), y(t = 7)) (8.70)

The numerical solving of DDEs is not yet as efficient as the state-of-the-art ODE software, but accurate
programs exist. For the current work, the dde23 function in Matlab is used. The algorithm is based on
the explicit Runge-Kutta method.

Using this solution procedure, validation of the Orthostasis Model occurred in two phases. The first
phase focused on the simulation of a normal 173-cm patient lying quietly, in order to compare the model

parameters to published values [106,107]. All constants were set to their default values. The state space
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was initialised by assuming that the heart was initially at rest (for example, Vj, was set initially to the
constant V., and so on) and by assuming that pressures could be approximated within an order of

magnitude using the equation

Unstressed vessel volume = Pressure x Vessel compliance.

The model was run for five minutes, during which time the state space adapted to its supine equilib-
rium. This equilibrium was found to be independent of the initial state space, provided the latter was
within range of physiological plausibility (for example, initialisations which led to a negative heart rate
caused problems). A selection of the equilibrium values appears in Table 8.3; a longer list is given in
Appendix D. For comparison in the table, typical values are also given, measured in healthy subjects of
usually unspecified ages from the literature [105-107]. The boundaries of the ranges do not necessarily
reflect definitions of pathology; hence it is acceptable for the model baseline values to lie outside the
range as long as they are similar.

Second, the response to a simulated tilt was observed. This response was gauged as follows:

1. The model was run for a 173-cm simulated patient as before. Baseline “pre-tilt” values were

calculated as the final data points in this period, as before.

2. A tilt from 0° to 75° in 10 seconds was imposed, incurring hydrostatic effects in the blood pressure.

The state variables changed to adapt the cardiovasculature to the upright position.

3. The simulated patient was observed for 2 minutes after tilt, to ensure new equilibrium values were

reached. “Post-tilt” values were calculated as the final data points in this 2-minute period.

The differences between the pre- and post-tilt values were calculated for four key parameters en-
compassing different aspects of the cardiovasculature: upper-body blood volume, stroke volume, cardiac
output, and splanchnic resistance. These changes were compared to the expected values reported by
Rowell [174] (see Table 8.4). As can be seen, the differences between the model’s results and Rowell’s
figures were small in all cases.

Also, the time courses of several model parameters were plotted and compared to those collected by
Wieling et al. [75] from a healthy subject (see Figure 8.5). Although the published results from this single

subject cannot necessarily be expected to represent average behaviour, they provide an interesting mode
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Quantity Units Normal value | Model baseline
Systolic BP mmHg 122 + 30 [107] 115
Diastolic BP mmHg 75 £ 20 [107] 80

Heart rate bpm 65—75 [106] 67

Cardiac output ml s~! 76-100 [106] 91
Stroke volume ml 70-80 [106] 83
Total peripheral resistance | mmHg s ml~! 0.58-1.1 [105] 1.32

Table 8.3: Selected baseline outputs of the Orthostasis Model. The values of “normal” haemodynamics
were taken from single sources in the literature [105-107]. bpm = beats per minute.

Quantity Pre-tilt | Post-tilt | Change | Expected Change
Upper-body blood volume (ml) 2487 2054 —433 ml —600 ml
Stroke volume (ml) 80 55 -31% -40%
Cardiac output (ml s=1) 91 75 -18% -22%
Splanchnic resistance (mmHg s ml 1) 34 4.9 +44% +45%

Table 8.4: Sample baseline and post-tilt outputs of the Orthostasis Model, compared with normal values
(“expected change”) from [174]. bpm = beats per minute.

of comparison. For example, the model’s response to tilt seems slightly underdamped, which is perhaps
due to the fact that not all feedback paths can be included in the model.

In summary, the model behaved reasonably well during supine rest and upright tilt. A third validation
of the model might involve setting the model constants (defined for healthy young subjects in Appendix D)
to values appropriate for elderly patients. The model could then in theory be run as above and the
results compared to published parameter time courses, as was done in Figure 8.5. However, neither such
constants nor such parameter time courses could be found in the literature, so the existing constants were

maintained.

8.6 Parameter Estimation

In the previous section, all constants were set to default values, and running the model yielded a certain
reproducible state-space behaviour. However, actual clinical data varies from patient to patient: no
single set of constants can duplicate each patient’s vital signs. Hence, to fit the model to a given patient,
the constants must be adjusted. This is achieved by iteratively comparing the model’s behaviour to
that observed in the patient’s data and adjusting the constants accordingly, until a stopping criterion is

satisfied. This is a form of what is known as parameter estimation.

The “Identifiability Problem” classifies a model into one of the following three categories:
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Figure 8.5: Blood pressure (BP), heart rate (HR), stroke volume (SV), cardiac output (CO), and systemic
vascular resistance (SVR) responses to a 75° head-up tilt. Data collected from a healthy subject by
Wieling et al. [75] are compared with the results from the current model. Some differences exist, due to
natural inter-patient variations.

Uniquely identifiable: Sufficiently accurate parameter estimation always results in the same outcome;

each model parameter can assume only one possible value in this single “correct answer”.

Nonuniquely identifiable: At least one parameter can assume more than one (but a finite number

of) possible values. Note that in each of these answers, an equally good fit to the data still occurs.
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Nonidentifiable: At least one parameter can assume any of an infinite number of values.

With the number of model constants (~150) greatly exceeding the number of independent parameters
calculated from the four available datastreams (see Section 1.4.2) for use in parameter estimation, the
Orthostasis Model is classified as “nonidentifiable”. Several methods to deal with nonidentifiability

exist [33]:

Model reparameterisation

Incorporation of additional knowledge

Design of a more informative experiment

Setting elusive parameters as constants

The final technique was employed for the current work: most of the values available from the literature
were kept constant during parameter estimation.

Identifying which parameters to estimate and which to keep constant is an important task. Not
all the findings from the previous chapter can be used fully, since certain parameters of interest within
syncopal patients (such as those characterising the activation of endocrine pathways) are impossible to
estimate using the noninvasive monitoring of the Falls Clinic. The list of key parameters to estimate
thus represents the intersection of parameters of clinical interest with parameters that can be extracted
reliably from the available data set.

This intersection is important to consider: simply choosing the most clinically important parameters,
rather than clinically important parameters which can be estimated reliably, may be responsible for
misleading results. In a cerebrovascular model, Ursino et al. [219] selected six parameters to estimate in
patients, keeping the remaining parameters constant. These six were chosen based solely on their clinical
relevance. Recently, Payne [151] performed a sensitivity analysis on three of these six parameters, and
found that two of them (cerebrospinal fluid outflow resistance and the intracranial elastance coefficient)
had virtually no effect on the model outputs, whilst the third parameter (cerebral autoregulation gain,
Gaut) had very little effect compared to several other parameters. In particular, G,y had less than
half of the effect of each of five other parameters which were not considered for estimation by Ursino et

al. This implies that at least three of the six constants selected for parameter estimation are not able
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to be calculated sufficiently accurately from the Ursino cerebrovascular model: either the model requires
adjustment or the constants are not as clinically relevant as is supposed by the authors.

For the present work, of the ~150 parameters, the subset to be estimated was designated as:

P,: baroreceptor operating point, mmHg

kir: cardiac effectiveness multiplier, dimensionless

kqb: a parameter inversely related to baroreflex gain, mmHg

GT,: gain of sympathetic activity on sino-atrial node, s

Gr,: gain of parasympathetic activity on sino-atrial node, s

Wisp:  parameter relating baroreflex activity to peripheral vasoconstriction, dimensionless

Vi:  total blood volume, ml

Here, k;, is a constant which is multiplied by the cardiac effectivenesses of the left and right ventricles
(k; and k, respectively; each is measured in ml mmHg !). The Bezold-Jarisch reflex can be linked
to hypovolemia (low V;) or venous pooling. The latter can be caused by, among other things, a poor
baroreflex arc (high k., or low absolute values of G, or Gr,) or a lack of sufficient vasoconstriction
(low Wyep). Problems in the endocrine system or central nervous processing can be manifested in the
resetting of baroreceptors (affecting kqp, Gr,, and/or Gr, ), or blood volume control (affecting V). The
parameters P, and k;, are not expected to be linked to any particular vasovagal syncope mechanism, but
estimates are still required prior to determining the other parameters.

The sequential parameter estimation scheme to estimate these parameters will be described in the

next section.

8.6.1 Supine Parameters

It was assumed that the mean supine BP was itself the best estimate of the baroreceptor operating point
P,. Hence, P, was the easiest of the seven parameters to estimate.
To calculate the cardiac effectiveness multiplier k., the model was analysed under steady state con-

ditions; this reduced the model to a system of eight linear equations with eight unknowns:
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where F' = F,; = F,,., ), P;C; refers to the sum of volumes contained in the compliant vessels, a, = ’“TTLT ,
and a; = % Since steady state conditions are being analysed, L; = L, = 1, and T is set to the resting

heart period measured in the patient.

The eight unknowns were solved using Gaussian elimination, and the computed systemic arterial
pressure (Ps,) was compared with the actual mean supine BP. The difference was used to adjust k;,
and the system of equations was re-solved iteratively in this manner until a solution was found. (A
solution was deemed acceptable when k;,. and P;, required updating by less than 10~* units, where one
unit was defined as the initial guess for kj. in the former case, and 1 mmHg in the latter case.) The
style of iteration was a variant of the Powell dogleg method [160,161] provided by The MathWorks Inc.
This optimization algorithm is very similar to the Levenberg-Marquardt method (a “model trust region”

approach) but the Jacobian matrix is approximated rather than calculated explicitly.

The final supine parameter to estimate was k,p. Equation 8.44 was differentiated with respect to the
carotid sinus afferent firing frequency f.s, and the resulting derivative 8‘9]% was used as follows. Baroreflex
sensitivity was calculated using the spectral technique described in Section 3.4.5, and it was assumed that

ORR 0T Of.s
OBP B 6.fc.s: aF)cs ’

BRS = (8.79)

Ofes
’ 9P,

Since BRS and % were known quantities could be determined easily by rearranging Equation 8.79.
Finally, differentiating Equation 8.36 with respect to P, and setting P.; = P, yields the estimate for kg
as required:

kab — fmax - fmin ) (880)

Ofes
4 OP.s
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Figure 8.6: Demonstration of the optimisation of ANS gains. A. The decrease of mean blood pressure
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8.6.2 Parameters from the Initial Response to Tilt

The two branches of the ANS — sympathetic and parasympathetic — operate with different reaction
times. The latter acts rapidly, within the course of a single heartbeat, while the former is more sluggish,
requiring several heart beats to attain full effect. Wieling [225] found that qualitative examination of
post-tilt HR could be used to estimate their relative strengths. For the current work, the first 45 seconds
of the mean BP (MBP) time series following tilt were input to the Orthostasis Model, and the resulting
HR response examined. To match this expected HR response to the actual HR response from the ECG,
two parameters were adjusted: G, and Gr,, reflecting the gain of the sympathetic and parasympathetic
nervous systems acting on the sino-atrial node. Each parameter was constrained (Gr, < 0,G1, > 0),
so that the sympathetic (parasympathetic) effect never increased (decreased) heart period. The two-
dimensional optimisation was achieved using a nonlinear minimisation routine: the Nelder-Mead simplex

(direct search) method. Figure 8.6 illustrates typical results.
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8.6.3 Parameters from the Early Adjustment to Tilt

For the final stage of parameter estimation, the first two minutes of MBP after tilt were examined. (Such
a long period was not necessary for the estimation of G7, and Gr,, since most or sometimes all of the
increase in HR occurs within the first 45 seconds.) The parameters adjusted to match the expected and
actual MBP time series were Wy, and V4, reflecting peripheral vasoconstriction and total blood volume

respectively. The Nelder-Mead simplex method was again used to achieve the optimal parameter fit.

8.6.4 Selection of the Data Set

Using the sequence of parameter estimation described above, seven model parameters of interest could
be determined for each patient, for the purpose of syncope prediction. The patients selected for this
analysis were those for whom the seven parameters could be estimated, and who were assigned a clear
diagnosis with respect to vasovagal syndrome. This excluded patients with excessive artefacts in their
RR tachograms or BP time series, patients who did not undergo prolonged HUT, and patients with
uncertain diagnoses. The size of this data set, labelled Subset C, was 40 patients (15 vasovagal and 25
nonvasovagal). When setting the parameters of a classifier, a balanced data set consisting of 15 patients

of each type was used, as before.

8.7 Predictions from Parameter Estimation

8.7.1 Comparison of Parameter Sets

Out of the many characteristics which can be evaluated in the Falls Clinic patients, it was hypothesised
that these could be divided into two nearly distinct groups: those related to age, weight, height, etc., and
those related to the presence of vasovagal syndrome. The problem was then to estimate the parameters
in the former group from the supine data in order to adjust (“normalise”) the model for a particular
patient, before estimating the parameters in the latter group to form the diagnosis.

Hence, for the patients in Subset C, the first three of seven parameters were estimated using the
supine data, following the parameter estimation sequence of Section 8.6, and the remaining four were first
assigned their default values (G, = -0.13 s, G, = 0.09 s, Wysp = -1 s, Vi = 5.0 L, as per Appendix D).
These seven-dimensional vectors were then compressed to two-dimensional vectors, using a technique

called Neuroscale. The technique will be discussed more thoroughly and with more applications in
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Section 9.3, but in the present section it is only necessary to appreciate that a seven-dimensional vector
can be approximated as a two-dimensional vector, for the purposes of visualising differences between
patient groups. Such a visualisation is given in Figure 8.7A. Recall that all differences among data points
are due to the variance in only the first three of seven parameters: P, (61-174 mmHg), k. (0.33-4.98),
and kqp (8.1-67 mmHg).

Next, the four upright parameters were estimated rather than set to their default values, using the
procedure of Sections 8.6.2 and 8.6.3. The resulting new seven-dimensional vectors were input as test
vectors to the same Neuroscale network. The visualisation of the new data points is given in Figure 8.7B.
The ranges for the four final parameters were also observed individually: G, (-0.24-0 s), Gr, (0-0.11
s), Wesp (0.04 — 1.41 s), and V; (4.5-5.7 L).

The data points are more spread out than those of Figure 8.7A, since in the first graph four of the
seven parameters are fixed for all patients, whereas in the second graph all seven parameters are permitted
to vary. Hence no information is gleaned from the observation that the data points have become more
diffuse. The information of interest is whether the data points have moved in characteristic patterns for
vasovagal syncope patients as compared to nonvasovagal subjects. This is difficult to determine precisely
from the two figures, so the vectors which connect the new two-dimensional points to the old ones are
plotted in Figure 8.8. These vectors show no characteristic movement in the 2D space for either patient
group. Hence, the present method is unable to discriminate syncopal from nonsyncopal patients, and the

four estimated parameters do not appear to be predictive of syncope.

8.7.2 Combination of the Four Parameters

The distributions of the four parameters are given in Figure 8.9. As can be seen, no parameter on its
own is capable of differentiating vasovagal patients from nonvasovagal patients. Next the parameters
are plotted one against each other in turn, to see if any combination of two parameters can differentiate
between the two patient classes (see Figure 8.10). It is interesting to note that the ANS gains — G,
and G, — separate patients into two distinct groups, representing high or low levels of ANS activity.
However, no pair of the four signal processing parameters can separate the patients into vasovagal and
nonvasovagal groups.

In Chapter 6, a linear classifier was used to combine four parameters, each offering some discrimi-

natory information between the two patient groups. The four upright parameters estimated from the
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Significant overlap exists between the two patient groups, confounding classification.
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Figure 8.9: The distribution of the four post-tilt feature vectors in vasovagal (red crosses) and nonvaso-
vagal (blue circles) patients. See page 131 for an explanation of the four parameters.

Orthostasis Model can be analysed in a similar way. Applying canonical variates analysis (CVA) to
these four parameters yielded the four-dimensional projection vector which best differentiates between
the two patient classes: u; = {0.73,—0.46,—0.48,0.12} (see Section 6.6.2 for a detailed explanation of
u;). Multiplying this vector by the 4D feature vector of each patient ({Gr,,Gr,, Vi, Wesp}) yielded 30
scalars, representing the 30 patients. Finally, an attempt was made to classify the patients using LOOCV
on these scalars, in a manner similar to that performed in Section 6.5.4. The positive predictive value

(PPV), NPV, and overall accuracy following LOOCV were 0.65, 0.69, and 0.67 respectively.

8.7.3 Long-term HUT

As described in the previous chapter, the endocrine system assists with the maintenance of BP during
prolonged HUT. A natural extension of the parameter estimation scheme would be to estimate G 45
(angiotensin-II gain, see Equation 8.24) from the post-tilt data, considering the hypothesis that patients
with low G 42 should be more prone to fainting. This parameter is difficult to estimate reliably, owing to
the many factors controlling BP during HUT. However, an attempt was made, using the Nelder-Mead
simplex method on systolic BP data to achieve the optimal parameter fit for G42. All post-tilt BP data

were used, with the exception of the final three minutes before syncope, which in many syncopal patients
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Figure 8.10: An alternate representation of the data contained in Figure 8.9. Here, each parameter is
plotted against the other in turn, to examine the joint discriminatory capability of each pair. Logarithmic
axes are used for clarity; see page 131 for an explanation of the four parameters.

are influenced by factors other than the RAA system. While the mean G 42 in syncopal patients was
found to be lower than that of nonsyncopal patients (p < 0.05 using the Wilcoxon signed rank test), the
parameter was a poor classifier (NPV = 0.63). This was arguably due to the strong overlap between
the two patient groups’ G 4o values. The implication of this finding is that either G 45 is too difficult to

measure accurately, or that it plays a role in some patients’ propensity to faint but not others.

8.8 Conclusion

With the aid of a model, it was hoped that a more informed syncope prediction could be achieved.
However, the results demonstrate that this approach does not offer an advantage over the signal processing
work of Chapter 6: the accuracy of a linear classifier using the four model parameters as inputs is low.
Table 8.5 compares the accuracies of the best results from Chapters 4, 6, and 8.

There are several problems which proved too difficult to overcome in the physiological modelling;:
firstly, there were many parameters which could not be measured directly. Most of the parameters in the
Orthostasis Model were not estimated from the Falls Clinic population but were set as constants, often

taken from the models of Ursino et al.
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Section Variables Time period PPV | NPV | Accuracy
4.6.4 BP, RPP All available data 0.71 0.94 0.84
6.5 LF (T14) Early response to HUT | 0.41 0.83 0.60
6.6 ICFV P3 Early response to HUT | 0.78 0.86 0.83
6.6.2 LC: Signal Processing | Early response to HUT | 0.93 0.88 0.90
8.7.2 LC: Ortho. Model Early response to HUT | 0.65 0.69 0.67

Table 8.5: A comparison of the classification performance for various methods to predict or diagnose
automatically the presence of vasovagal syndrome. LC = Linear Combination.

Secondly, these constants have been calculated largely from healthy young volunteers, as opposed
to the elderly. This is due to the relatively poor characterisation of elderly people in the physiological
literature; healthy young volunteers are usually recruited in most studies.

A third factor is the reliance of the parameter estimation upon accurate Finapres data, in particular
the decrease in BP after tilt. As noted previously, although the Finapres is a very popular instrument for
the measurement of beat-to-beat changes in BP, it does not meet the standards of accuracy established
by the American Association of Medical Instrumentation.

A fourth factor may be the most important: it is possible that not all of the parameters necessary
for syncope prediction in the elderly can be derived from the first few minutes of BP, HR, or NIRS data
following tilt. The thoroughness of the investigation into these data streams in the present work makes
this a definite possibility: the information which they provide has not been able to predict vasovagal
syncope in the elderly based on the early response to tilt.

A question which arises is whether the approaches in Chapters 6 and 8 can be combined to improve
accuracy. It could be argued that signal processing has already played an important role in the determi-
nation of some of the model parameters; for example, the calculation of k,; requires BRS, the result of
processing an RR tachogram and a BP time series. Hence the question is whether the signal processing
methods of Chapter 6 could be used to enhance the model-fitting process. There are two problems,
however, with this approach. The first is related to the characteristics of the Falls Clinic data set: the
new patient subset would have to be formed from the intersection of Subsets A, B, and C, which would
significantly reduce the amount of data available for analysis. The second problem is more general: the
new signal processing metrics developed in Chapter 6 have not yet been studied by others, and hence
have not been linked quantitatively to parameters in the Orthostasis Model, for example via animal or
human studies. For these two reasons, the modelling approach of the current chapter was developed

separately from the techniques of Chapter 6.
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Chapter 9

Signal Processing for Syncope

Prediction During Prolonged HUT

9.1 Introduction

It is clear from the analysis in Chapters 6 and 8 that vasovagal syncope cannot be predicted sufficiently
accurately based on the first few minutes after tilt. The next step is to expand the analysis by exploring
the evolution of signal processing parameters during the course of HUT. It is possible that parameters
might evolve according to characteristic patterns which could differentiate fainters from normals before

the end of the test.

9.2 Selection of Parameters for Prolonged Monitoring

One of the best early predictors in Chapter 6 was BRS; monitoring the changes in HR and ICF were also
very effective. For these reasons, these three parameters are also considered in the current chapter, but
adapted to deal with prolonged monitoring. In addition, PP (pulse pressure) is included because it might
be inversely related to vasoconstriction [146], which is implicated in the minutes preceding vasovagal
syncope as discussed in Chapter 7. A fifth potentially useful parameter is RPP, which is supposed to
decrease prior to syncope, as discussed in Chapter 3. In summary, the following parameters were selected

as indicators of cardiac, vascular, and neural activity:

1. BRS - Baroreflex sensitivity: via spectral technique
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2. ICFV - Instantaneous centre frequency variability

3. ARPP - Rate-pressure product difference: current RPP minus baseline average RPP!

4. PP - Pulse pressure: PP = SBP - DBP

5. AHR - Heart rate difference: current HR minus baseline average HR

Secondly, the analysis of HRV (see tests T12-T21 in Table 3.2) was extended to represent a measure
of a patient’s evolving cardiovascular dynamics during HUT. The RR tachogram during the entire course
of HUT, from supine to upright and back to supine, was computed and ectopic beats were removed
using the procedure described in Section 5.9.1. In a sliding window of 90 seconds, the Fourier spectrum
of the RR tachogram was computed and divided into eight equal-width frequency bands from 0 to 0.5
Hz, encompassing all oscillations of interest. The energies in these bands became the eight time-varying
parameters of interest.

Finally, HRV was analysed in a more generic manner. In a sliding window, the reflection coefficients
of a 10th-order autoregressive (AR) model of the RR tachogram were computed, in order to attempt
to track the dominant frequencies in the HRV spectrum. The mth reflection coefficient (0 < m < 10)
of the data z(t) in each window represents the partial correlation between z(t) and z(t + m), holding
z(t+1),z(t+2),...,2(t + m— 1) constant [149]. Reflection coefficients were computed rather than the
actual AR coefficients since they are constrained to the interval [—1,1], and hence do not require any
form of normalisation to cope with different amplitude ranges.

In summary, three different multi-dimensional representations were investigated in the search for

trends in the plots of cardiovascular state:

e Eight equal-width frequency bands of the Fourier spectrum of the RR tachogram

e Ten reflection coefficients of an AR model characterising the RR tachogram

e An ensemble of five averaged secondary parameters from the ECG and BP data streams, as discussed

above.

Each was computed for the duration of HUT, where possible. Eighteen vasovagal syndrome patients

and 28 nonvasovagal patients were selected, who had an age of 65 of more and were free of AF and CRS.

1Recall that RPP = SBP x HR.
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These numbers are slightly larger than those associated with Subset A: six patients have been added.
The recordings of these patients were affected by artefacts in the first few minutes after tilt, but higher

quality data were recorded during the rest of HUT.

9.2.1 Choice of Baroreflex Sensitivity Calculation

Of the five BRS methods reviewed in Section 3.4.5, the spectral technique was selected for the current

work. The justifications for this choice are as follows:

e The spectral technique provides a continuous-time trace, tracking changes in BRS during the course

of a tilt test

o It allows the separate evaluation of sympathetic and parasympathetic components (depending on

whether arF or agr is chosen)

e It does not suffer unduly from only having short sequences of reliable data, as is the case for some

patients for whom there is a large amount of artefact around the time of tilt

9.3 Dimensionality Reduction

The trajectories over time of the three representations cannot be visualised easily in their original form,
since they are high dimensional. However, they can be visualised approximately in two dimensions via
dimensionality-reduction techniques, mapping each feature vector x; to a 2D data point y;. Sammon
mapping [177] is one such method, aiming to make the Euclidean distances d;; in 2D between pairs of
image patterns as close as possible to the Euclidean distances dj; between the corresponding pairs of

patterns in the original high-dimensional space. This is done by minimising the “Sammon stress”?,

N N
Esam = Z Z(dm - d;‘j)Z- (9-1)

i=1 j>i

In such a manner, 2D trajectories for each patient could be constructed.
Following the preliminary investigation with Sammon mapping, the second objective was to search
for typical deviations from normality (as assessed by visual inspection of the entire data set) that might

predict a positive test. However, a problem of Sammon mapping is that creating the map requires O(NN?)

2This version of the Sammon stress is a simplified form [135] of the original metric [177].
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calculations, since Fgym, sums %N (N — 1) distance pairs. A second problem is that Sammon mapping
acts as a look-up table, so that previously unseen data cannot be located in the projection map without
rerunning the optimisation procedure. Hence, to visualise all patient data simultaneously would require

one optimisation of all %N (N — 1) distance pairs, which is too large a computational challenge.

This problem is solved by Neuroscale [135], an extension of Sammon mapping which parameterises the
2D mapping so that y; = G(x;; w) for arbitrary x;, where w represents the Neuroscale model parameters.
To fit the model, the patient data were first subsampled every two minutes, generating a training set
of approximately 1000 data points (an average of approximately 22 data points per patient). Hence the
number of distance pairs involved was approximately 5 x 10°, representing a manageable computational
load. The data points were constructed as the feature vectors described above, after normalisation using a
zero-mean, unit-variance transform. This transform ensured that each element in a feature vector offered
a comparable contribution to the vector’s magnitude. In this manner the Euclidean distance between

points was not dominated by large-magnitude features, and small-magnitude features were not ignored.

Second, the model parameters were determined by nonlinear optimisation after setting the partial

derivatives of Fg,m to zero:

Esam O0FEsam 0Oy;
— 2
8wkr Z 8yz 6wkr 0 (9 )

where k refers to the index of an RBF (radial basis function), and r € {1,2} for a 2D map. 2Ewam s the

derivative of Equation 9.1:

O0FEsam d* di]
3y, j%éi < d” ) (Yz YJ) (9 3)

and, if the output of the k&th RBF is represented by zx,

Jyi
8wkr

= Sir2i (9.4)

where §;, is the Kronecker delta function.

Following Neuroscale training, “test data” (patient-specific, high time-resolution data) could be input
to the RBF network for each patient. A high time resolution was permissible since the computation of

network outputs of a trained RBF is very fast compared to the training itself. Trajectories were calculated
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Figure 9.1: Changes in patient state throughout an experiment, as measured using (A) Fourier transform
spectral band amplitudes, (B) AR reflection coefficients, (C) an ensemble of five parameters explained in
the text, or (D) a pair of parameters described in Section 9.4.4. Sammon mapping was used to visualise
the high-dimensional data. Black and red dots indicate pre- and post-tilt data, respectively, in a single
patient without vasovagal syndrome. In each of the four representations, pre- and post-tilt data are
distinguishable, as was the case for most patients. The time separation between each data point is 20
seconds.

for all 46 patients using a resolution of 20 seconds.

9.4 Results

Results are given in Figures 9.1 through 9.4, considering different segments of prolonged HUT. Figure 9.1
provides example trajectories of the feature vectors for a single patient for the entire duration of HUT.
Figure 9.2 compares the mean baseline feature vector to that recorded immediately after tilt, for all
available patients. Figure 9.3 compares the same pre-tilt feature vector to that averaged over the last
five minutes in the upright portion of HUT. Finally, Figure 9.4 compares the pre-tilt feature vector to

the final data point recorded in the upright segment of HUT.

9.4.1 Fourier Transform

Although some patient trajectories showed no obvious trend, the majority tended to shift permanently
from one region of the Sammon map to another following tilt, as shown in Figure 9.1A. This finding was
in line with published findings (see Section 3.4.3) that spectral power tends to change upon tilt.

When Neuroscale was used to visualise the entire patient data set, no generalisations could be made
regarding the distribution of the normal versus vasovagal data in the 2D space: the direction of the shift
from pre-tilt to immediate post-tilt did not seem to be affected by the diagnosis assigned to the patient
(see Figure 9.2A/E). For this reason, it is concluded that the Neuroscale visualisation of spectral band

amplitudes in the RR tachogram offers no benefit for syncope prediction.
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Figure 9.2: Comparison of nonvasovagal (top row) and vasovagal (bottom row) patients in a 2D visuali-
sation, using the following input vectors: (A /E) Fourier transform spectral band amplitudes, (B/F) AR
reflection coefficients, (C/G) an ensemble of five parameters, (D/H) a pair of parameters described in
Section 9.4.4. Letters A-D are as in Figure 9.1 for nonvasovagal patients, and E-H represent the corre-
sponding data for patients with vasovagal syndrome. The black crosses represent the mean pre-tilt vector
(the last five minutes of data taken during the quiet baseline recording), and the red crosses represent the
mean post-tilt vector (from 2 to 5 minutes after tilt). The lines connecting each pair of points indicate
the direction of shift as a result of the initial response to tilt. In each of the four cases, the two patient
groups could not be distinguished.

To confirm that the method does not differentiate between the two patient groups during prolonged
HUT, the last few minutes (Figure 9.3A/E) and seconds (Figure 9.4A) of tilt were examined, when
differences in the Fourier transform should be greatest. These differences were found to be negligible as

is evident from the figures.

9.4.2 AR Reflection Coefficients

As with the Fourier transform trajectories, two phases (pre- and post-tilt) were observable in the AR

reflection coefficient trajectories (see Figure 9.1B).
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Figure 9.3: Comparison of nonvasovagal (top row) and vasovagal (bottom row) patients in a 2D visu-
alisation, using the following input vectors: (A /E) Fourier transform spectral band amplitudes, (B/F)
AR reflection coefficients, (C/G) an ensemble of five parameters, (D/H) a pair of parameters described
in the text. Letters A-H are as in Figure 9.2. The black crosses represent the mean pre-tilt vector (the
last five minutes of data taken during the quiet baseline recording), and the red crosses represent the
late post-tilt vector (the last 5 minutes in the upright position). The lines connecting each pair of points
indicate the direction of shift as a result of the late response to tilt. In cases A/E and B/F, the two
patient groups could not be distinguished. In contrast, the direction of the blue lines differed between C
and G, as well as between D and H, indicating that vasovagal syndrome could be identified using either
of these two input representations.

Figure 9.2B/F plots the averaged pre- and post-tilt results for each patient. These plots demonstrate
that no differences could be discerned between the post-tilt reactions of vasovagal and nonvasovagal
patients. As with the Fourier transform input representations, Figures 9.3B/F and 9.4B show that AR
reflection coefficients also cannot differentiate, on their own, between the two patient groups toward the
end of HUT, when maximal differences would have been expected. The similarity of these results with
those obtained with the Fourier transform coefficients is probably due to the fact that AR reflection

coefficients and spectral energy bands encode similar information.
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Figure 9.4: Comparison of nonvasovagal patients with vasovagal patients in a 2D visualisation using
Neuroscale, with letters A-D as in Figure 9.1. The black and green dots represent the mean baseline data
of nonvasovagal and vasovagal patients, respectively. The blue and red dots represent, for the same two
groups respectively, the data recorded at the end of HUT, immediately before the return to the supine
position. In D, and to some extent in C, the red dots only are in a separate region of the graph, indicating
that the two patient groups behave differently at the end of HUT.

9.4.3 Ensemble of Physiological Parameters

As previously mentioned, the parameters were transformed to each have zero mean and unit variance,
to cope with their differences in dynamic range. As with the Fourier transform bands and AR reflection
coefficients, the five-dimensional feature vectors were visualised in 2D for individual patients (see Fig-
ure 9.1C) and general pre-/post-tilt behaviour were compared across patients (see Figure 9.2C/G). This
grouping of five parameters was not found to behave consistently within either patient group to be useful
to predict syncope. During late HUT, some differences begin to appear between the two patient groups.
The blue lines in Figure 9.3C have a greater tendency to point leftwards than those in Figure 9.3G.
Figure 9.4C also shows that the late-HUT points for the two patient groups occupy slightly different

regions of the Neuroscale visualisation.

9.4.4 Projection of Physiological Parameters

Of the five physiological parameters, it is possible that the predictive capability of those carrying useful
information was reduced by those not carrying such information. Hence reductions of the ensemble to
fewer than five parameters were investigated.

In Section 6.6.2 it was noted that the relative utility of each parameter in a linear classifier can
be determined by examining the magnitude of its corresponding weight a;. In this manner, less useful
parameters can be identified and, if desired, discarded. Therefore, by performing CVA on the five

physiological parameters, a ranking of effectiveness can be achieved.
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A “final feature vector” was considered; this refers to the five aforementioned physiological parameters,
for the final data point recorded in the upright segment of HUT. Following CVA, the elements of the
eigenvector were 0.16 (BRS), 0.06 (ICFV), -0.98 (ARPP), 0.09 (PP), and 0.06 (AHR). Hence, at the
end of HUT, it is shown that ARPP and BRS contribute most of the classification information in the
feature vector: they differ to a greater extent than PP, ICFV, or AHR, when vasovagal and nonvasovagal
patients are compared. (This is despite the good performance of ICFV during early syncope prediction —
see Section 6.6.) When the ensemble is reduced from five to just these two parameters, the elements are
recomputed as 0.11 (BRS) and -0.99 (ARPP). The result of reducing the ensemble for one patient is
plotted in Figure 9.2D/H, where pre- and post-tilt behaviour are different as expected. In addition,
Figures 9.3D/H and 9.4D imply that the combination of ARPP and BRS (after zero-mean, unit-variance

transformation) is able to differentiate between patients toward the end of HUT.

9.5 Evolution of Parameters during Prolonged HUT

The capacity of the four methods to differentiate between patients can be tracked from the start to the
end of HUT. For each of the methods, the mean data point p at time ¢ of each of the two patient groups

was calculated. The Euclidean distance between the two means was determined as:

D

5(t) = lluv () — pn(t)]| = \/ v (®) = un @] [pv () — pn@)] = 4| D [ovi®) — i ®]® (95)

i=1

where V indicates vasovagal patients and N nonvasovagal patients, and T represents transposition of the
D-dimensional vectors. The hypothesis motivating this investigation was that a clear increase in §(t)

many minutes prior to syncope might be used as a predictor.

For comparison, the distance between a point and its group’s centre, averaged over all points (n(t))

was also considered. Hence §(t) is compared with an intra-group variability, n(t):

1 M
10 = 37 2110 = ey 0 (0.6

where the M vectors (data points) x; are each associated with a class C; of either V or N as in Equa-

tion 9.5.

The results are plotted in Figure 9.5. As shown on the righthand side of the plots, an increase in
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0(t) was found to occur in three of the four cases, starting several minutes before syncope. In A and
B, () does not exceed n(t), indicating that classification performance would be expected to be poor.
However, in C and D the significant rise in 6(¢) toward the end of HUT signifies the differing responses of
the two patient groups to prolonged orthostasis. Since the mean inter-cluster distance exceeds the mean
point-to-centre distance, some degree of classification is possible.

In summary, as the intra-group variability n(t) is not significantly smaller than the the inter-group
distance 6(t) in Figure 9.5A-B, accurate discrimination between the two groups in these high-dimensional
spaces is not possible. However, discrimination is possible with the combination of ARPP and BRS, as

shown in part D of the figure. Based on these results, a linear classifier was constructed as

Y = a1 + a2 (9.7

where z; are the parameters ARPP and BRS after zero mean and unit variance normalisation, a; are the
weights (-0.99 and 0.11), and the result y should be high for vasovagal syndrome patients and low for
nonvasovagal patients. The method of classification is similar to that used in Section 6.6.2.

The final data point (that closest to the return to supine) yielded the highest accuracy: the area under
the receiver-operator characteristic curve was 1.00, as determined by the leave-one-out method. Hence
the two patient groups were separated perfectly. The area was lower for the preceding data points, but
exceeded 0.80 for the final 150 seconds of HUT. This implies that there exists some degree of predictive
information in the 2.5 minutes preceding syncope. The overall accuracy of the classifier remained above
0.80 for more than a minute before syncope, as can be seen in Figure 9.6. This could be exploited by an
algorithm offering early warning of syncope. For example, in cases where patient comfort is particularly

important, a tilt test may be halted one minute early with a success rate of approximately 80%.

9.6 Conclusion

The investigations of this chapter used data from the entire course of HUT. Visualisation of the evolution
of these parameters in 2D space did not reveal typical patterns in the data which could differentiate
between the two patient groups in the early stages of HUT. However, the rate-pressure product and
baroreflex sensitivity were able to discriminate between the two patient groups shortly before syncope.

One conclusion from this is that different parameters are appropriate for syncope prediction during
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Figure 9.5: Using high-dimensional space to compare patients’ cardiovascular dynamics, as calculated
with (A) Fourier transform, (B) AR reflection coefficients, (C) an ensemble of five parameters explained in
the text, or (D) a pair of parameters as explained in the text. On the left are shown the five minutes before
and after the patient was tilted to the upright position (the time of tilt is indicated by a vertical black line),
and on the right are shown the 20 minutes preceding either syncope (for vasovagal syndrome patients) or
the return to the supine position (for nonsyncopal patients). The blue line represents Euclidean distance
d(t), and the red line represents the average intracluster distance, n(t).
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Figure 9.6: Overall accuracy as a function of time, for a classifier based on the optimal combination of
ARPP and BRS (compare Figure 9.5D).

different periods of HUT.

An expanded version of Table 8.5 is given as Table 9.1. The combination of RPP and BP has an
accuracy of 100% at the end of the HUT test but does not offer significant predictive benefit. However,
HUT may be terminated early with 80% accuracy, preventing the patient from experiencing the discomfort
associated with syncope. A clinician could combine an indicator from such an algorithm together with

his own observation of patient symptoms, while making a diagnosis.

Section Variables Time period PPV | NPV | Accuracy
4.6.4 BP, RPP All available data 0.71 0.94 0.84
6.5 LF (T14) Early response to HUT 0.41 0.83 0.60
6.6 ICFV P3 Early response to HUT 0.78 0.86 0.83
6.6.2 LC: Signal Processing Early response to HUT 0.93 0.88 0.90
8.7.2 LC: Ortho. Model Early response to HUT 0.65 0.69 0.67
9.5 BP, RPP Data point at end of HUT | 1.00 1.00 1.00
9.5 BP, RPP 1 min before end of HUT 0.76 0.87 0.83
9.5 BP, RPP 2 min before end of HUT 0.68 0.86 0.79

Table 9.1: A comparison of the classification performance for various methods to predict or diagnose
automatically the presence of vasovagal syndrome. LC = Linear Classifier.
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Chapter 10

Conclusions

10.1 Summary of the Thesis

The first two chapters stressed the importance of syncope prediction, and provided the clinical background
necessary to understand the problem. The diagnosis of syncope, including a description of the various
pathologies responsible for fainting, was reviewed and vasovagal syncope was identified as being poorly
understood.

Chapter 3 described previous work on the quantitative analyses of BP, HR, SaO,, and NIRS time
series, and presented the relevant concepts underlying time-frequency analysis. Since even healthy pa-
tients experience persistent nonstationarity in their haemodynamics, the Smoothed Pseudo-Wigner Ville
Distribution was characterised as being well suited to their analysis.

Chapter 4 explained how the data set used in the thesis was acquired. The data set was then
investigated with the aim of generating automatic diagnoses. It was shown that orthostatic hypotension
was difficult to assess, whereas it was easier to diagnose carotid sinus hypersensitivity and vasovagal
syndrome more accurately. In particular, the use of the rate-pressure product (blood pressure multiplied
by heart rate) during the time of syncope combined with monitoring the decrease of systolic blood pressure
during prolonged HUT, yielded an 84% accuracy rate for the diagnosis of vasovagal syndrome.

Chapter 5 explored the use of time-frequency analysis in RR tachograms. After the smoothing pa-
rameters of the SPWVD were chosen based on artificial data, the optimised transform was validated on
artificial data. The computed LF /HF ratio followed the expected value with a maximum tracking error of

just 3.6%. Finally, the application of the SPWVD transform to the clinical data showed it to be superior
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to the Lomb periodogram.

Chapter 6 investigated whether it was possible to predict vasovagal syncope well in advance of its
occurrence. Classical techniques from the literature gave poor results on the Falls Clinic data set: out
of 29 tests, only four achieved an overall accuracy greater than 0.70, and none more than 0.75. The
largest negative predictive value (NPV) was 0.83. The most significant contribution of this chapter
was the development of a new form of time-frequency analysis of RR tachograms. As a classifier, the
ICFV during time period P3 performed well (NPV: 0.86). A linear classifier using a total of four input
parameters increased the NPV marginally to 0.88. Several factors which may have reduced the maximum
possible accuracy attainable in the data set were listed.

Chapter 7 identified and analysed the three most probable mechanisms of vasovagal syncope. Chap-
ter 8 considered these pathways during the development of the Orthostasis Model. Once the model was
validated by comparison with physiological findings in the literature, it was used to underpin parameter
estimation from the clinical data introduced in Chapter 4. Three parameters (baroreceptor operating
point, cardiac effectiveness, and baroreflex gain) were extracted from each patient’s supine baseline record-
ing in order to normalise the model for that patient, after which four new parameters (sympathetic and
parasympathetic gains at the sino-atrial node, peripheral vasoconstriction gain, and total blood volume)
were estimated from the data collected in the upright position. The modelling approach, however, was
found to offer no improvement upon the signal processing results: a linear classifier using the four pa-
rameters estimated in the upright position yielded an NPV of just 0.69, as compared to 0.86 for the best
signal processing technique. This finding may have been due to the amount of inference in the model,
increased vulnerability to Finapres artefact, or other reasons discussed in Chapter 8.

Finally, Chapter 9 returned to the problem of predicting syncope based on signal processing param-
eters, but this time using data from mid- and late HUT. Two-dimensional data visualisation of signal
processing parameters did not reveal patterns characteristic to patients with vasovagal syndrome, during
prolonged HUT. However, it was shown that information derived from the rate-pressure product and
baroreflex sensitivity, could be used to terminate the test approximately 2 minutes before syncope was
expected to occur. A weighted combination of the two parameters gave a prediction accuracy of 80%.
This achieves the secondary aim of increasing patient comfort, by halting a test early.

The first key conclusion from the thesis is that it is very difficult to predict vasovagal syncope early

in HUT (within the first few minutes after tilt) with great accuracy. A second conclusion is that the use
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of physiological modelling does not help, because it requires the values of too many unknown variables
to be extracted. Finally, the third key conclusion is that the test can be terminated early to increase

patient comfort by avoiding syncope.

10.2 Future Work

Signal Processing

Prospective testing of the predictive value of ICFV during time period P3 (see Section 6.4.2) requires
more data to be collected. Appendix F shows that a minimum of 68 patients would be needed in a
randomised controlled trial.

The instrumentation described in the thesis produced a number of noninvasive data streams. An
alternative to using the Finapres for beat-by-beat BP is to develop a BP estimation algorithm based on
PTT (see Section 3.4.7). This was attempted for the current research but thus far without success. The
search for a reliable BP estimator from PTT has been on-going since the early 1920s [30], motivated by
the knowledge that changes in blood pressure are often associated with changes in vasoconstrictive tone,
which in turn affect the speed of transmission of pulse waves in blood vessels.

The methods used to classify the data could also be extended. For example, an alternative to produc-
ing parameters for canonical variates analysis would be to use phase space dissimilarity measures [81].
Statistical distribution functions would be derived from the original time series, and these functions could
be compared for patients with different diagnoses. A second alternative would be to compute a large
number of metrics from the time series, and apply the relatively new technique of false discovery rate

(FDR) to identify significant patterns [17].

Physiological Modelling

The following improvements should be considered:

Hydrostatic changes of the cardiac pump: Although hydrostatic changes upon tilt are imposed on
the coronary blood flow, the cardiac pump itself (described in Equations 8.30 through 8.1, and 8.26
through 8.29) is not affected. In fact, the atria lie approximately 4 cm above the hydrostatic

indifference point in the upright position.
Spatial limitations of the pericardium: The left and right ventricles compete for space within a
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limited pericardium; this is one of the causes of lowered left ventricular stroke volume on standing.
The model currently overlooks this effect which may be why stroke volume did not decrease as

much as reported in the literature.

Increasing the effects of atherosclerosis: As the arteries harden, their compliance and resistance
change. The change in compliance is currently estimated using a simple formula but the (smaller)
change in resistance is more difficult to estimate. If a characterisation of this change, or even an
empirical relationship between arterial resistance and compliance, could be determined from the

literature, then the arterial resistance of a given patient could be estimated more accurately.

Angiotensin II: Given the multiplicity of generation mechanisms for renin, and hence angiotensin II
(see Section 7.3.3), accurate modelling is difficult. However, the model would be improved if it
could be expanded to reflect the differences between antagonising the actions of angiotensin II

versus blocking it altogether, the results could be combined with an upcoming clinical trial.

The most significant extension of the model regards the representation of breathing. An extended
version of the Orthostasis Model has been developed to accommodate respiration rate and tidal volume,
but the instrumentation used at the Falls Clinic is unable to provide these time series reliably. Should
the instrumentation be improved, this is an area for further study which will assist with the parameter
estimation.

Incorporating NIRS data into the model should also be considered more carefully in future. For the
present work, it was not included since some patients experienced a rise in O2Hb upon tilt concurrent with
a fall in arterial BP, and it was not clear how best to reflect this behaviour in the model. Payne showed
recently that TOI may be represented in a simple extension of the Ursino cerebrovascular model [153].
An expression relating TOI to cerebral blood flow and volume was derived:

Vi by

TT0I=1— ———
(Va + Vv)qb

(10.1)

where k, is a constant, gy represents blood flow rate, and V, and V, represent the volume of blood per
unit volume of tissue, in the arterial and venous systems respectively. However, in Falls Clinic patients,
TOI usually did not change noticeably upon tilt. Moreover, the supine baseline value of TOI is dependent

on optode positioning: in some cases this affects the reading by up to 10 percentage points. One way of
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mitigating this second problem might be to assume that all patients had the same supine level of TOI,

and scale their entire traces accordingly.

Data Acquisition

In future HUT studies, a Valsalva manoeuvre (attempting to expire air while keeping the throat closed)
could be introduced. The observation of the impact which the manoeuvre has on BP and HR may assist
with the model parameter estimation, and in some cases identify patients with sympathetic neurocircu-
latory failure.

The most significant improvement which could be made would be the acquisition of further patient
data. If the height and weight of every patient were recorded, this additional data could be used to
normalise some of the constants in the Orthostasis Model on a per-subject basis. The availability of
more training data would also make it possible to investigate nonlinear classifiers, such as the multi-layer
perceptron, which could be trained without the risk of over-fitting. A larger data set could also be

subdivided to take into account the inter-patient heterogeneity of vasovagal syncope.
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Appendix A

Peak Detection Algorithms

A.1 Introduction

This appendix describes the algorithms developed for the current research to overcome the problems
associated with peak detection in the ECG and PPG traces. Owing to the similarity between these two
tasks, the discussion will be limited to the ECG algorithms, with comparison to the PPG made at the
end.

The QRS complex was introduced in Figure 1.2 in Chapter 1. Various methods of detecting the QRS
complexes in an ECG have been proposed [54,76,83,84,145,209]. Two major problems in QRS detection

are:
Noise: e.g. muscle noise, electrode pop, electrical mains interference, baseline wander, and high T waves

Morphological variability in the R waves: e.g. a wide, high-amplitude beat will have a lower R-

wave slope, confounding some derivative-based approaches

For these reasons, even the best automated QRS complex detectors cannot match the level of human
analysis. In the present work, an algorithm whose fundamentals are based loosely on those of the
algorithm of Pan and Tompkins [145] was employed (see Figure A.1). The procedure was chosen for its

simplicity and accuracy, and tailored with the following assumptions in mind:
e A rest period occurs at some point within the first five minutes of the recording

e The ECG is acquired using three leads
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Figure A.1: An overview of the QRS detection algorithm.

e The subjects were elderly, and hence ectopic beats should be expected

In addition to this algorithm, pre- and post-processing was needed to improve the accuracy the result-
ing event series. The QRS detection algorithm was based on four signal processing sections: ECG time-
stamping, QRS localisation, multi-lead integration, and event series analysis. In the following sections,
each of these blocks is discussed in turn, and the algorithm is validated quantitatively using well-known

annotated ECGs available publically from the MIT-BIH database [60].

A.2 ECG Time-Stamping

The time stamps associated with the ECG data points were uneven and inaccurate. They were therefore
replaced by an evenly-sampled time vector, calculated as part of the post-processing of the original data.
A summary of the algorithm used to post-process each ECG is illustrated in Figure A.2. It consisted

of the following steps:

1. The raw ECG was represented as a two-column matrix, containing the data points in mV and their

respective time stamps in seconds.

2. Towards the end of a clinical experiment, as the patient was being disconnected from the ECG
monitor, the device sometimes recorded time stamps at a slower rate than normal. To prevent these
times from affecting the accurate calculation of F; in step 4, the ECG was truncated. Although
a rule-based algorithm detecting patient disconnection was written for the PPG recordings, the

termination points of ECG recordings were also confirmed visually.
3. If any gaps greater than 3 seconds existed in the recording, steps 4 through 7 were applied to each
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Figure A.2: Assigning time stamps to the ECG or PPG. The electrical mains notch filter (50 Hz) is
not applied in the case of the PPG signal, as the time series reflects IR attenuation rather than electric

potential.

block of continuous data in turn. If the time series were instead treated as a whole, the calculations

in step 4 would have been inaccurate.

4. The “mean sampling frequency” of an ECG record consisting of N data points, ranging from a

start time of tsiars to an end time of tg,a1, was estimated using the following formula:

Fs

N-1

tﬁnal - tstart

5. The new time vector started with the first time stamp of the ECG, and ended with a value very

close to the final time stamp of the ECG. In between, the points were sampled evenly at a rate of

Fy.

6. The new two-column matrix, consisting of the original data points assigned to the new time stamps,

was linearly interpolated at 256 Hz. This standardisation simplified all subsequent software.

7. The matrix was filtered using a 100-point FIR notch filter, removing electrical mains interference

near 50 Hz.

8. Finally, the result of steps 4 through 7 for each continuous block of the ECG was combined into an

m % 2 matrix, with m/256 representing the length of the ECG recording in seconds.
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A.3 QRS Localisation

The identification of QRS complexes within the refined ECG time series followed the Pan and Tomp-
kins algorithm, divided into three sections: preprocessing, peak detection, and decision making (recall

Figure A.1).

Preprocessing

Preprocessing consisted of four stages:

Band-pass filter: To reduce noise and focus on the frequencies of interest. The desirable passband to

maximise QRS energy is 5-15 Hz. (Pan and Tompkins used 5-12.)

Differentiation: To find the slope of the signal (QRS complexes are spikes). A nearly linear frequency

response between 0 and 30 Hz was obtained using;:

1

= S—T[—a(n —2) —2a(n — 1) + 2a(n + 1) + a(n + 2)]. (A.2)

y(n)

Squaring: To intensify the slope, in order to restrict T-waves from being taken as QRS complexes. Not
only were all data points made positive, but the higher frequencies (i.e. the QRS frequencies) were

emphasised:

y(n) = [z()*. (A3)

Moving window integration: To consider slope and width together, for an approximation of morphol-

ogy. In the equation
1 N

N was chosen as the width of the widest QRS complex. With a greater value of N, the QRS
complexes and T-waves could have merged together; with a smaller value, a single QRS complex

could have produced several peaks in the integration waveform.
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Figure A.3: Detection of peaks using fiducial marks. The MWTI trace was analysed from left to right.
After it exceeded the threshold (yellow circle) from Equation A.5, a search for the fiducial point (red
circle) began. This point occurred when the MWI descended below 50% of the maximum obtained after
the yellow circle was assigned. Next, a range of times (denoted by the two vertical lines) was defined
usually as from 125 to 225 ms before the fiducial point. The maximal BPF point (blue circle) within this
range was easily determined. Finally, the QRS complex time was calculated as the first moment of the
BPF trace within 80 ms of this point (i.e. the “centre of mass” of the QRS complex). BPF = Band-pass
filtered; MWI = Moving Window Integration.

Fiducial Point Determination (Peak Detection)

The objective of fiducial point determination was to identify a consistent point of interest in the ECG
which could be used to determine the time of the R peak. A fiducial mark could have been set at various
points in the MWTI trace, each of which mapped uniquely onto a feature of the QRS complex. For the

current algorithm, the method described in Figure A.3 was developed.

Decision Making

Once a peak was identified, it had to be tested for validity, based on its amplitude. To this end, running
estimates of peak height and noise levels were maintained, calculated as the median of the previous eight

values. A threshold was maintained, to compare the expected with the actual peak heights:

Threshold = Noise + 0.189 (Peak — Noise) (A.5)

Two thresholds were used: the first applied to the output of the BPF, and the second to the output

of the MWL If the current MWI peak exceeded the MWI threshold, and the corresponding BPF peak
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exceeded the BPF threshold, the peak was labelled as a QRS complex.

When both peaks were exceeded, a morphology test was performed. An interval of ten typical QRS
complex widths, centred on the putative QRS complex, was compared with a similar interval for an
“archetypal” (see below) case. The comparison was achieved using Pearson’s correlation coefficient R
between the two intervals. If Pearson’s R was above 0.5, the beat was accepted; furthermore, if it was
above 0.75 the current beat was recorded as the new archetype. If Pearson’s R was below 0.5 but above a
certain threshold (usually 0.43), a second assessment was performed: if the current morphology interval
correlated closely (Pearson’s R > 0.80) with any interval in the subsequent 1.2 seconds, the beat was not
rejected. This exception was necessary since some patients do not exhibit a consistent archetypal QRS
complex for more than several minutes at a time.

In summary, the decision-making algorithm accepted peaks which exceeded the MWI and BPF thresh-
olds, and passed the morphology test. Special cases arose from time to time, and these were dealt with

systematically:

e If 1.66 average beat-to-beat intervals passed with no new peak detection, the algorithm returned
to the last detected beat, and continued with a 50-70% lower threshold. (Average beat-to-beat

interval was determined using the mean of the eight most recent RR intervals.)

e Irregular heart rates were special cases

e A refractory period of 200 ms was imposed after a QRS complex: no detections were allowed during

this time

e A probationary period of 160 ms followed the refractory period: the detection was rejected if its

maximal slope was less than 50% of the maximal slope of the preceding QRS complex

Initialisation

A number of parameters had to be initialised whenever the algorithm was used to analyse a new ECG

signal. This occurred in two learning phases:

Learning phase 1: Initialised detection thresholds using 2 s of signal

Learning phase 2: Initialised RR-interval average and RR-interval limit values, using two beats
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A.4 Interpreting the Multi-Lead ECG

Three-lead ECGs were monitored in the Falls Clinic (see Section 3.3). Reasonable results (not shown)
could be obtained by examining only the ECG lead with the highest signal-to-noise ratio (SNR); however,
in most cases the accuracy of QRS detection increased by including the two other ECG leads. This is due
to the fact that artefacts could affect one or two ECG leads at a time whilst leaving the third relatively
unaffected.

Hence, the three ECG leads were each processed individually using the aforementioned QRS detection
algorithm, and the resulting three event series were summed on the basis of their respective SNRs. All
QRS points were accepted when the SNR in the associated region of the time series (calculated using an
autocorrelation function) exceeded a certain threshold. Of course, a number of these QRS points were
removed later as a result of post-processing (discussed in Section A.5). So in combining the three ECG

leads, it was preferable to err on the side of inclusion rather than exclusion.

A.5 Event Series Analysis

The final step in processing the ECG involved the removal from the event series of simple false positives
and false negatives, based on timing information alone. The amplitude of the ECG signal played no role

in this step.

o If the beat-to-beat variation in RR interval did not vary by more than 20%, the beat was accepted

as correct.

e If the current RR interval was less than 80% of the previous one, the neighbouring QRS times were
examined with a rule-based system to determine the most suitable action in line with the previous

behaviour of the event series. Usually this involved deleting or repositioning a heartbeat.

e If the current RR interval was more than 120% of the previous one, another rule-based system was

employed. This usually resulted in the insertion or repositioning of a heartbeat.

Generally, the approximate heart rate determined using the results of the peak detection algorithm
was assumed to be accurate — that is to say, if the event series analysis was found to remove every other
heartbeat, or insert an extra heartbeat after every beat, or reposition every other heartbeat, appropriate

action was taken. This involved, firstly, confirming that the original time series fell within an acceptable
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heart rate range; secondly, disregarding the last 4 decisions; thirdly, re-initialising a few key parameters;
and fourthly, re-initialising the algorithm from the point where the problem occurred.

Beats that resulted from repositioning or insertion were labelled as specious, since in these cases their
timing represented merely an approximation: the arithmetic average of the two neighbouring heartbeat
times. This labelling aided later analysis of instantaneous parameters such as HR or HRV: regions with

low confidence were omitted.

A.6 Validation of the Algorithm

The algorithm was applied to the MIT-BIH Normal Sinus Rhythm Database, to prove its efficacy. Eigh-
teen ECGs, each of varying duration, were selected, for a total of over 11.4 million normal heartbeats.
The sensitivity and positive predictive value were each 99.96%. (Note that specificity has no meaning in

a beat-detection algorithm, since an infinite number of true negatives exist.)

A.7 PPG Peak Detection

The peak detection algorithm written for the PPG was similar to the algorithm designed for the ECG.
However, since the signal was in general noisier, with less synchronisation amongst the different leads!,
and showed more variability in its morphology, several key differences exist. For example, event series
analysis and morphology checks were not used, and the special cases listed in Section A.3 were not
applied.

The algorithm was based on the procedure of Germuska [58], with the following enhancements:

e The threshold applied to the cubed waveform was calculated as the mean of the ranked middle 50%
of the previous eight peaks. This change was thought to reflect “normality” better than a simple

mean of the previous two beats.

e A 450-ms probationary period was enforced after each peak detection. This was inspired by the

similar condition used in the ECG analysis.

e All fiducial points of possible interest were calculated: 0, 25, 50, 75, and 100% of the rise of each

peak, in addition to each peak’s point of maximal slope.

1Recall that the three ECG leads should be expected to produce QRS complexes simultaneously; however, the features
of the four PPG optodes were expected to occur at different times, owing to the time required to conduct a pulse wave from
one point to another, as described in Section 3.4.7.
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e The differentiation equation of choice was the same as for the ECG (see Equation A.2), since it was

not necessary to restrict the analysis to causal techniques.

e The signal was upsampled by a factor of approximately 10 (to 814.1 Hz) using cubic splines inter-

polation, so that fiducial points could be indexed more accurately.
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Appendix B

The Human Nervous System

The human nervous system is traditionally divided into the central and peripheral nervous systems (CNS

and PNS, respectively). Both of these systems play an essential role in vasovagal syncope.

B.1 Central Nervous System

The CNS can be divided into four parts:
1. Forebrain

o Cerebral hemispheres (for high-level processing such as “thinking”) *
e Thalamus (relays sensory inputs to cerebral hemispheres)

e Hypothalamus (for homeostasis and basic behavioural regulation) *

2. Cerebellum (for balance and motor control)
3. Brainstem

e Midbrain (for many basic unconscious activities)
e Pons (literally, “bridge” - bundles of nerves)

e Medulla (for cardiac and respiratory regulation) *

4. Spinal cord (for transmission and simple processing of nerve activity) *

Asterisked areas are especially important in the genesis of vasovagal syncope. For example, the cerebral

hemispheres can provide emotional responses such as fear or anxiety. The spinal cord is important for
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relaying afferent (incoming) and efferent (outgoing) nerve traffic. The hypothalamus releases hormones
as well as hosting the “defence area”, a behavioural nucleus responsible for integrating the fight-or-flight
regime known as the defence reaction.

Finally, the medulla is responsible for the control of breathing, heart rate, peripheral resistance, and
other autonomic functions. An area of particular interest for many of these tasks is the nucleus tractus

solitarius (NTS), which processes input from the following sources:

e The vagus, glossopharyngeal, and other cranial nerves

The hypothalamus

The spinal cord

The brainstem

Plasma hormones (as the medulla lies near a weakness in the blood-brain barrier)
Besides having a large number of inputs, the NTS also has numerous outputs [13]:

e Sympathetic nuclei in the spinal cord

e Parasympathetic nuclei in the medulla

e Other brain stem nuclei

e The forebrain

B.2 Peripheral Nervous System

The PNS, responsible for connecting the CNS to muscles and glands, comprises two elements:
Sensory neurons: Convey input from sensory receptors to the CNS

Motor neurons: Convey output from the CNS to muscles and glands

Somatic division: Innervates skeletal muscle

Autonomic division: Innervates smooth muscle, the heart, and glands

The autonomic division, also known as the autonomic nervous system (ANS), is governed by three forces:
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Sympathetic: Prepares the organism for exertion (in the extreme, the defence reaction)
Parasympathetic: Regulates visceral function in a state of relaxation
Enteric: Controls digestion

The enteric system is ignored in the current research as it is a largely independent unit. The sympathetic
and parasympathetic! systems act in a push-pull manner, and are thought to influence the content of

different frequency bands in the heart rate variability (HRV) spectrum.

1For the purposes of this thesis, parasympathetic is synonymous with “vagal”, as the parasympathetic avenues of interest
involve the vagus nerve.
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Appendix C

Instantaneous Frequency Equality

In Section 5.3.3, it was claimed that two particular methods of calculating ICF were equivalent; the object
of this appendix is to prove their equality. The equality is stated in Ville’s seminal paper introducing the

SPWVD (Smoothed Pseudo-Wigner Ville Distribution) [222] but here a rigorous path is pursued.

C.1 Delineation of the Proof

For a complex signal z(t) = a(t)e!**), the instantaneous frequency (ICF or ¢'(t)) of z(t) can be expressed

1y
as ¢'(t) = %Sf). Consider a simple way of deriving this quantity: ¢'(t) = w, where y(t) is an
in-quadrature signal, y(t) = & * z(t). (To assist an intuitive understanding, the two functions z(t) and

y(t) are separated by /2 radians on a circle in the complex plane; the rate at which their tangent varies

will reflect directly the rate at which the pair of functions moves around this circle.)

Next consider the following quantity:

3 7 wW (t,w)dw
B ffooo W (t,w)dw

a(t) (C.1)

where W (t,w) is the Wigner transform of z(t). The object of the proof is to show that a(t) = ¢'(t).
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C.2 Basic Properties

The starting point of the proof is one of the definitions of the Dirac function:

5(r) = / e, (C.2)

=§ e

Differentiating the left and right sides with respect to 7, we obtain:

1 *© .
5(r) = — / e du (C.3)
21 J_
which can be rewritten as:
/ we 9T dy = —i2d (1) (C.4)

A property of the derivative of the Dirac function is that for any h(7),

[ () h(r)dr = —1(0). (C.5)

C.3 The Proof

Multiplying C.4 by an arbitrary function A(7) and integrating over all time,
1 O:O K O:O wh(r)e— ™ dudr = —i2n [ Z 5 (r)h(r)dr. (C.6)
The right-hand side of C.6 can be simplified with the aid of C.5:
1 Z 1 Z wh(r)e— ™ dwdr = i27h'(0) .7)

Then, inserting h(7) = g(t + 7/2)g*(t — 7/2), for arbitrary g(t), into the simplified C.6 we reach the

following general identity:
Z * _ Z —iwT s [ * _ *!
[ [ wg (t + 2) g (t 2) e “Tdwdr = —mi [g'(t)g*(t) — g(t)g*' (t)] . (C.8)
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Turning to the specific case where g(t) = z(t), C.8 becomes:

/_ T Wt w)dw = 2@ () (1), (C.9)

Since W (t,w) satisfies the marginals,

% /_O:o W(t,w)dw = |o(t)|? (C.10)

and since |z(t)|? = a?(t), the left-hand side of C.10 can be substituted easily into C.9, to yield:

ffooo wW (t,w)dw

() = ffom W (t,w)dw

= a(t). (C.11)
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Appendix D

The Orthostasis Model

This appendix describes the constants, state space, and intermediate variables of the Orthostasis Model
developed in Chapter 8.

Descriptions of the constants are provided in Tables D.1 through D.8. These values were almost
always taken from the literature [16,113,152,154,174,215-217,219]. Although the Falls Clinic patients
were of advanced age, it is not possible to obtain invasive cardiovascular parameters from the elderly.
Instead, such parameters are obtained from young healthy subjects or via animal experimentation.

Table D.9 lists the 26 state variables comprising the DDE system. Recall that the model does not
require any input for it forms a closed loop. Hence, for each of the state variables, it is possible to give a
“Typical value”. This is the value which is observed when the default constants are used and the model
is run until all state variables settle to a homeostatic equilibrium.

Tables D.10 and D.11 describe the intermediate variables which can be derived from the state variables
and are often used in the calculation of the latter. For example, the heart period, T, is the sum of the
two state variables ATy and AT, plus the model constant Tj. This intermediate variable is then used in

the calculation of the state variable P,, (see Equations 8.8 and 8.27).
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Constant | Value | Description
Systemic volumes:

Vusa 0 Unstressed systemic arterial volume

Vusp 274.4 Unstressed splanchnic peripheral volume

Viep 134.64 | Unstressed extrasplanchnic peripheral volume

Vmp 105.8 Unstressed muscular peripheral volume

Vaubp 72.13 Unstressed brain peripheral volume

Vaunhp 24 Unstressed heart peripheral volume

Vb 294.64 | Unstressed brain venous volume

Vuho 98.21 Unstressed heart venous volume
Pulmonary volumes:

Vupa 0 Unstressed pulmonary arterial volume

Vepp 123 Unstressed pulmonary peripheral volume

| 120 Unstressed pulmonary venous volume
Cardiac volumes:

Vula 25 Unstressed left atrial volume

Vura 25 Unstressed right atrial volume

Vi 16.77 Unstressed left ventricular volume

Vure 40.8 Unstressed right ventricular volume
Overall volumes:

Vi 5.0x10% | Total blood volume in supine position
Vissasic 1297 Total immutable component of unstressed volumes

Table D.1: Volume constants in the Orthostasis Model, expressed in ml of blood. The variation in the
number of significant figures results from the fact that they were not reported to a consistent number of
figures in the literature.

Constant | Value | Description
Systemic resistances:
Rypn 19.71 Coronary peripheral resistance set-point
R0 0.224 Coronary venous resistance
R, 0.06 Systemic arterial resistance
R, 0.038 Splanchnic venous resistance
Ryevo 0.039 Upper extrasplanchnic venous resistance
Ryey 0.036 Lower extrasplanchnic venous resistance
Rymvo 0.048 Upper muscular venous resistance
Ry 0.045 Lower muscular venous resistance
Extrasplanchnic Peripheral Basal Resistances:
Ryepo 3.40 Upper extrasplanchnic peripheral basal resistance
Riepo 3.17 Lower extrasplanchnic peripheral basal resistance
Rumpo 4.32 Upper muscular peripheral basal resistance
Rimpo 4.03 Lower muscular peripheral basal resistance
Pulmonary resistances:
Ry, 0.023 Pulmonary arterial resistance
Ry, 0.0894 | Pulmonary peripheral resistance
Ry, 5.6x10~2 | Pulmonary venous resistance
Cardiac resistances:
Ry, 2.5x1073 | Left atrial resistance
R, 2.5x1072 | Right atrial resistance

Table D.2: Resistance constants in the Orthostasis Model, expressed in mmHg s ml~! of blood. Resistance
names ending in “0” are basal values, and the actual value is calculated after taking into account effector
mechanisms.
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Constant | Value | Description
Systemic compliances:
Csa 0.28 | Systemic arterial compliance
Csp 2.05 | Splanchnic peripheral compliance
Cuep 0.301 | Upper extrasplanchnic peripheral compliance
Clep 0.367 | Lower extrasplanchnic peripheral compliance
Cump 0.236 | Upper muscular peripheral compliance
Cimp 0.289 | Lower muscular peripheral compliance
Chp 0.119 | Coronary peripheral compliance
CsoLOW 61.11 | Splanchnic venous compliance, LPC
Chuev 9 Upper extrasplanchnic venous compliance
ClevsLOW 11 Lower extrasplanchnic venous compliance, LPC
Cumy 7.07 Upper muscular venous compliance
ClmvyLOW 8.64 | Lower muscular venous compliance, LPC
Chy 3.57 Coronary venous compliance
Csymn 4.7 Splanchnic venous compliance, HPC
Clevrr 0.846 | Lower extrasplanchnic venous compliance, HPC
ClmuvHI 0.665 | Lower muscular venous compliance, HPC
Pulmonary compliances:
Cpa 0.76 | Pulmonary arterial compliance
Cpp 5.8 Pulmonary peripheral compliance
Cpy 25.37 | Pulmonary vernous compliance
Cardiac compliances:
Cla 19.23 | Left atrial compliance
Cra 31.25 | Right atrial compliance

Table D.3: Compliance constants in the Orthostasis Model, expressed in ml mmHg ™! of blood. “HI”

parameters were calculated as W, where NCF is listed in Table D.8. HPC = high-pressure

conditions, LPC = low-pressure conditions.

Constant | Value | Units | Description
Resistances:
Ry, 0.88 mmHg s ml~! | Proximal cerebral veins’ resistance
R, 0.366 mmHg s ml~! | Terminal vein resistance
Ry, 0.6 mmHg s ml~! Large intracranial resistance
Compliances:
Chran 0.205 ml mmHg ! Basal pial arteriolar capacitance
ACpq, 2.87 ml mmHg~! Amplitude of sigmoidal curve to calculate Cp,
ACpq, 0.164 ml mmHg ! Amplitude of sigmoidal curve to calculate Cp,
Other cerebral haemodynamic parameters:
P, 0 mmHg Cerebral capillary pressure
kr 13.1x10° | mmHg® s ml~! | Factor in hyperbolic constant relating Rp,and V,,
Taut 20 S Autoregulation time constant (for zy¢)
kco, 15 - Factor in power used to calculated Aco,
bco, 0.5 - Term in power used to calculated Aco,
qn 12.5 ml s~! CBF autoregulatory set point
Gaut 3 s mmHg~! Autoregulation gain
TCOs, 40 S COs; reactivity time constant
Geco, 8 s mmHg~! CO» reactivity gain
TCO, 0 - Degree of CO» reactivity effect

Table D.4: Cerebral constants in the Orthostasis Model.
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Table D.5: Feedback regulation constants in the Orthostasis Model. Hz represents neural firing in spikes

S

Constant | Value | Units | Description
Carotid sinus (baroreflex) afferent pathway:
P, 92 mmHg | Pressure at which no baroreflex occurs
kab 11.758 mmHg | Related to slope of a static function for baroreflex
fabmin 2.52 Hz Lower saturation of baroreflex frequency discharge
fabmaz 47.78 Hz Upper saturation of baroreflex frequency discharge
Afferent chemoreflex pathway:
Tae 2 s Time constant for chemoreceptor dynamics
Sfacmin 0.835 Hz Lower saturation of frequency discharge
Sfacmaz 12.3 Hz Upper saturation of frequency discharge
Powc 45 mmHg | Pap, at the central point of a sigmoid function
kac 29.27 mmHg | Parameter for sigmoid
Ky 3 - Dimensionless constant used in CO5’s effect
f 1.4 - Dimensionless constant used in COy’s effect
Afferent pulmonary stretch receptors pathway:
Tp 2 s Time constant for f,,
Gop 2.329x10™* | Hz ml=! | Stretch receptor gain
Sympathetic efferent pathway:
fess 2.1 Hz Minimum frequency for fes
feso 16.11 Hz Maximum frequency for fe,
Sfesmin 2.66 Hz Minimum frequency for the effectors to take effect
fesmaz 60 Hz Maximum possible frequency for f,, and f,p
kes 0.0675 s Exponential power used in f.,; calculation
Whep -1 s Peripheral sympathetic baroreceptor weight
Whsv -1 S Unstressed volume baroreceptor sympathetic weight
Whesh -1 S Coronary sympathetic baroreceptor weight
Wesp ) S Peripheral sympathetic chemoreceptor weight
Wesw 5 S Unstressed volume sympathetic chemoreceptor weight
Wesh 1 s Coronary sympathetic chemoreceptor weight
Whosp -0.34 s Peripheral sympathetic pulmonary weight
Whpsv -0.34 s Unstressed volume sympathetic pulmonary weight
Whosh 0 s Coronary sympathetic pulmonary weight
Vagal efferent pathway:
fewvo 3.2 Hz Maximum frequency for fe,
fevs 6.3 Hz Minimum frequency for fe,
fabo 25 Hz Central value on f.,; axis for determining f.,
Eev 7.06 Hz Exponential power constant used in f, calculation
Wew 0.2 S Unstressed volume chemoreceptor weight
Wpo 0.103 s Unstressed volume pulmonary weight
0, -0.68 Hz Offset term

-1
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Constant | Value | Units | Description
Cardiac constants:
P 2.8 mmHg Minimum left-atrial pressure
Proyo 1.82 mmHg Minimum right-atrial pressure
k; 20.02 | ml mmHg~! | Left-ventricular cardiac effectiveness
kr 34.02 | ml mmHg~! | Right-ventricular cardiac effectiveness
Pon 100 mmHg Basal value of systemic arterial pressure
Ppon 17 mmHg Basal value of pulmonary arterial pressure
CNS hypoxic response:
Pocosn 40 mmHg Normal CO, arterial pressure
Ospn 13.32 Hz Basal value of peripheral sympathetic offset term
Oson 13.32 Hz Basal value of unstressed volume sympathetic offset term
Oshn 3.6 Hz Basal value of coronary sympathetic offset term

Table D.6: Miscellaneous constants in the Orthostasis Model.
represents neural firing in spikes s

—1

CNS = Central Nervous System. Hz
. Basal values of the CNS hypoxic response represent normoxia and

normocapnia.
Gain Value Time Value Delay Value Basal Value v
(v/Hz) || constant (s) (s) constant (v)
GRsp 0.695 x* TRsp 6 Dgsp 2 Rspo 2.49 mmHg s ml—!
GRep 1.94 TRep 6 Drpep 2 Repo 1.655 || mmHg s ml~!
G Rmp 247 TRmp 6 Drmyp 2 Ropo 2.106 || mmHg s ml~!
Gvusy -265.4 TVausy 20 Dyysy 5 Vausvo 1435.4 ml
Gvuev -74.21 TV uev 20 Dy yer 5 Vauevo 640.73 ml
Gvumu -58.29 TV umo 20 Dvymy 5 Vumwo 503.26 ml
Grs -0.13 TTs 2 Dy 2 To 0.58 s
Gy 0.09 TTw 1.5 D, 0.2 S

Table D.7: Effector parameters (gains, time constants, delays, and basal constants) in the Orthostasis
Model. All gains and basal constants make use of the unit “v” reported in the right-most column. For an
example of how these four types of parameters are used, see Equations 8.40 and 8.17. * GRsp increases
to 1.22 upon tilt to reflect abdominal contraction.

Constant | Value | Units | Description
Hydrostatic effects:
CSFg 0.8 - Extent to which CSF experiences hydrostatic changes
H, 13 mmHg Splanchnic circulation pressure gradient
H, -14 mmHg Upper-body circulation pressure gradient
H,; 57 mmHg Lower-body circulation pressure gradient
H, -29 mmHg Cerebral circulation pressure gradient
Hy -6 mmHg Coronary circulation pressure gradient
H, -24 mmHg Carotid sinus pressure gradient
Viscoelastic creep:
kve 6.5 ml mmHg ! | Viscoelastic creep gain in individual compartments
Toe 600 S Time constant for viscoelastic creep
AVyeo -200 ml Overall viscoelastic creep, compensating for blood plasma loss
Tveo 600 S Time constant for overall viscoelastic creep
Other constants:
NCF 13 - Nonlinear compliance factor, to decrease C’s under HPC
PNC 6.5 mmHg Threshold pressure between LPC and HPC

Table D.8: Postural constants in the Orthostasis Model. Hj was estimated based on C'SFp [174,216],
and AV, from [16].
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Variable | Typical value | Units | Description
Cardiac state:
P, 6 mmHg Left atrial pressure
P, 4 mmHg Right atrial pressure
Vascular state:
Py, 16 mmHg Pulmonary arterial pressure
Py 14 mmHg Pulmonary peripheral pressure
Py 7 mmHg Pulmonary venous pressure
P, 95 mmHg Systemic arterial pressure
P, 90 mmHg Systemic arteriolar pressure
P, 5 mmHg Splanchnic venous pressure
Pymo 4 mmHg Upper muscular venous pressure
P 4 mmHg Lower muscular venous pressure
P,.. 4 mmHg Upper extrasplanchnic venous pressure
B, 4 mmHg Lower extrasplanchnic venous pressure
Feedback state:
ARy 0.7 mmHg s ml~! | Splanchnic peripheral resistance adjustment
AR,y 1.9 mmHg s ml~! | Extrasplanchnic peripheral resistance adjustment
ARy 2.4 mmHg s ml~! | Muscular peripheral resistance adjustment
AViyse -260 ml Splanchnic venous unstressed volume adjustment
AVyer -73 ml Extrasplanchnic venous unstressed volume adjustment
AVimo -57 ml Muscular venous unstressed volume adjustment
AT, -0.14 s Sympathetically-mediated adjustment to heart period
AT, 0.44 s Vagally-mediated adjustment to heart period
Cerebral state:
Vpa 10 ml Pial arteriolar volume
Py, 38 mmHg Pial arteriolar pressure
P, 7 mmHg Cerebral venous pressure
Zaut -0.18 - Degree of autoregulatory effect
Miscellaneous:
A2 1 - Normalised concentration of angiotensin IT
Ve 0 ml Volume change due to viscoelastic creep

Table D.9: Cardiac, vascular, and feedback state variables in the Orthostasis Model. “Typical values”
are observed under equilibrium conditions, when all model constants are set to their default values.
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Variable | Typical value | Units | Description
Cardiac:
T 0.88 S Heartbeat period
Fy 83 ml s~ ! Blood flow exiting the left ventricle
F,, 83 ml s7! Blood flow exiting the right ventricle
Fy, 83 ml s~ ! Systemic arterial flow
Fp, 83 ml s~! Pulmonary arterial flow
L 1 - Left cardiac output afterload effect
L, 1 - Right cardiac output afterload effect
Vascular:
Va 3540 ml Total unstressed volume
P, 5 mmHg Coronary venous pressure
P 95 mmHg Carotid sinus pressure
Feedback:
fab 26 Hz Afferent baroreflex firing rate
fsp 4 Hz Firing rate of the efferent sympathetic fibres to arteries
fsh 5 Hz Firing rate of the efferent sympathetic fibres to the heart
fsv 4 Hz Firing rate of the efferent vagal fibres to veins
fo 5 Hz Firing rate of the efferent vagal fibres to the heart
Ryep 7 mmHg s ml~! | Upper extrasplanchnic peripheral resistance
Riep 7 mmHg s ml~! | Lower extrasplanchnic peripheral resistance
Rymp 9 mmHg s ml~! | Upper muscular peripheral resistance
Ripmp 9 mmHg s ml~! | Lower muscular peripheral resistance
Rsp 3 mmHg s ml~! | Splanchnic peripheral resistance
Rpp 20 mmHg s ml~! | Coronary peripheral resistance
Vusv 1170 ml Splanchnic venous unstressed volume
Vuev 570 ml Extrasplanchnic venous unstressed volume
Vamo 450 ml Muscular venous unstressed volume

Table D.10: Cardiac, vascular, and feedback variables in the Orthostasis Model. “Typical values” are
observed under equilibrium conditions, when all model constants are set to their default values.
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Variable | Typical Units Description
value
Cerebral:
Rys 0.37 mmHg s ml~T | Resistance of the terminal intracranial veins
Rpa, 6 mmHg s ml~! | Resistance of pial arterioles
Cui 11 ml mmHg ! Intracranial venous compliance
Cha, 0.56 ml mmHg ! | Pial arteriolar pressure
ACp, 3 ml mmHg~! | Pial arteriolar compliance adjustment
% 0 ml s7! Rate of change of intracranial venous volume
@ 11.7 ml s—! Blood flow from pial arterioles to capillaries
Aco, 0 - Corrective factor to depress COs reactivity at low CBF levels
Postural:
je 1 - Normalised total blood volume (pv < 1)
Vi 0 ml Haemorrhage volume
Csy 61 ml mmHg~! | Splanchnic venous compliance
Vo 305 ml Splanchnic venous volume
Cimw 9 ml mmHg ! Lower muscular venous compliance
Vimw 38 ml Lower muscular venous volume
Clev 11 ml mmHg—! Lower extrasplanchnice venous compliance
View 49 ml Lower extrasplanchnice venous volume
Ve 0 ml Volume change due to muscular/extrasplanchnic visco. creep
Voco 0 ml Overall volume change due to viscoelastic creep
Ryev 0.05 mmHg s ml~!' | Upper extrasplanchnic venous resistance
Rumv 0.04 mmHg s ml~! | Upper muscular venous resistance
Ry, 0.22 mmHg s ml~! | Coronary venous resistance
o 70 ° Final tilt angle
cr 0 - Tilt progression extent (0 < ¢ < 1; 0 is incomplete, 1 complete)

Table D.11: Cerebral, respiratory, and postural variables in the Orthostasis Model. CBF = Cerebral

blood flow.
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Appendix E

Atrial Fibrillation Detection

To detect atrial fibrillation (AF) in Chapter 6, an algorithm described by Tateno and Glass [211] was
modified and executed. In brief, RR-interval histograms were computed and compared with those from

an online database, according to the following steps.

A. Training

Data from the online MIT (Massachusetts Institute of Technology) Atrial Fibrillation Database (AFDB)
were downloaded [60]. This data set contained 300 AF episodes within the 10-hour recordings of 25
patients. During each AF episode, blocks of 100 consecutive beats were considered at a time. The
median RR interval value was calculated and used to bin the 100-beat set into one of 9 different classes,
corresponding to median values between 300-399 ms, 400-499 ms, ... , 1100-1199 ms. For each class, a
density histogram of ARR! was calculated after accumulating that class’s data from all patients. The

result was a set of nine standard density histograms for AF, sorted by median RR interval.

In their original paper, Tateno and Glass used the mean, rather than median, but this was problematic
for two reasons. First, it was susceptible to skew by the long RR intervals that result from gaps in the
recording. These gaps may have been due to technical failure or, more commonly, to regions of artefact
in which no beats were detected. Second, their binning system, which only covered RR intervals of less
than 1200 ms, was insufficient for evaluating their data set. Spanning several patients, a total of about

6 minutes of data needed to be discarded for RR intervals in excess of 1200 ms.

1The differenced RR time series.
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B. Testing

For a test data set, density histograms of 100-beat segments were compared with the standard histograms
developed previously. The best-suited instrument for this comparison was the Kolmogorov-Smirnov test,
as it provided a measure of the dissimilarity between two distributions, by returning a familiar statistical
p value. For p larger than some critical threshold, it could be said that the distributions were not
significantly different from one another. For the present work, p < 0.01 was associated with a positive
identification of AF.

Before the AF test was applied to Falls Clinic data, its performance on the training set was assessed.
As indicated in the final row of Table E.1, classification performance was quite good. Part of the reason
the results were imperfect was that errors existed in the MIT-BIH annotations. As in the case of QRS

detection described in Appendix A, the present work led to the discovery and reporting of these errors.

C. Excluding Falls Clinic patients with AF

The final step was to identify Falls Clinic patients with AF. The test was used in conjunction with visual
inspection; the latter was used since regions of artefact or CRS can masquerade as AF. A rule-based
system could easily have substituted for this visual inspection. An example of a patient experiencing
paroxysmal (intermittent) AF is shown in Figure E.1.

There were two main limitations of the AF test. The first was that localisation of the onset or end
of AF episodes were difficult to detect, as each analysed sequence comprised of 100 beats. This was not
a major issue for the current work, as the aim of applying the algorithm was simply identification of
occasional or constant AF, as opposed to measuring the timing of its beginning and end. Secondly, in
some patients, the median RR interval could rise in excess of 1200 ms. For these few 100-beat sequences,

the presence of AF had to be evaluated by eye.
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Subject TP TN FP FN | Sensitivity | Specificity | PPV | NPV
00735 303 39288 29 0 100 99.93 91.27 | 100
03665 10889 | 40934 168 673 94.18 99.59 98.48 | 98.38
04015 494 41257 31 2122 18.88 99.92 94.1 | 95.11
04043 9179 47087 | 5455 93 99 89.62 62.72 | 99.8
04048 511 39011 302 9 98.27 99.23 62.85 | 99.98
04126 3023 37943 270 1523 66.5 99.29 91.8 | 96.14
04746 30175 | 16880 698 19 99.94 96.03 97.74 | 99.89
04908 5180 54760 630 1089 82.63 98.86 89.16 | 98.05
04936 31449 | 13597 | 8232 267 99.16 62.29 79.25 | 98.07
05091 60 36441 78 82 42.25 99.79 43.48 | 99.78
05121 31634 | 15273 | 2125 748 97.69 87.79 93.71 | 95.33
05261 582 44118 352 381 60.44 99.21 62.31 | 99.14
06426 52347 1397 688 622 98.83 67 98.7 | 69.19
06453 237 34274 208 17 93.31 99.4 53.26 | 99.95
06995 26649 | 24604 776 3059 89.7 96.94 97.17 | 88.94
07162 36119 0 3078 0 100 0 92.15 -
07859 40262 0 19922 0 100 0 66.9 -
07879 37110 | 16451 | 2925 7 99.98 84.9 92.69 | 99.96
07910 6615 29697 104 74 98.89 99.65 98.45 | 99.75
08215 33000 | 10176 79 0 100 99.23 99.76 100
08219 13585 | 40653 609 4345 75.77 98.52 95.71 | 90.34
08378 1764 35683 191 7776 18.49 99.47 90.23 | 82.11
08405 43390 | 13677 | 1654 34 99.92 89.21 96.33 | 99.75
08434 2284 37319 26 120 95.01 99.93 98.87 | 99.68
08455 43654 | 15238 559 0 100 96.46 98.74 | 100
Total | 460495 | 685758 | 49189 | 23060 95.23 93.31 90.35 | 96.75

Table E.1: Beat-by-beat assessment of AF based on ARR using data in the MIT AFDB (atrial fibrillation
database). Each heart beat was accompanied by an expert label indicating whether it occurred as a
result of AF or not; these expert labels were compared with the results of the automated algorithm, for
25 patients. The final row indicates that the classification accuracy was good. TP = True Positive, TN
= True Negative, FP = False Positive, FN = False Negative. PPV = Positive Predictive Value, NPV =
Negative Predictive Value.
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Figure E.1: Evaluating MIT AFDB patient 04043 with the AF algorithm. The upper plot depicts the
RR intervals. In the lower plot, the outcome of the algorithm (blue line) of either atrial fibrillation (AF)
or normal (N) is compared with the expert labels (coloured horizontal lines).
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Appendix F

Power Calculation for Prospective

Testing

The results obtained in Section 6.5 suggest that ICFV may be a metric worthy of further study. The
number of patients recommended for a prospective clinical trial can be determined using a statistical
power calculation. Such calculations on non-parametric data are difficult; however, since the data are
close to being normally distributed, a reasonable approximation can be obtained by assuming they are

Gaussian.

The following methodology is employed. Let x and y correspond to the ICFV values associated with
normal and vasovagal patients, respectively, and n, and n, correspond to the number of samples in either
case. The null hypothesis is that the mean post-tilt values of ICFV for the two groups are identical. The
prospective trial will be designed to have an 80% chance of rejecting the null hypothesis at the 5%

significance level, based on the test statistic [170]

where s is calculated using the retrospective data, as

2 2
N iC k) e Lk VPP TINSTISY (F.2)
Ng + Ny — 2

Letting X represent a random variable with a standard normal probability distribution, the value of z
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such that Pr(X < z) = p can be found in a distribution table [43] for a given p. To obtain results for
which p < 0.05 in the prospective study with an 80% chance of success, the sum of the two tabled values

of z corresponding to p = 0.80 and p = 0.975 would represent z in Equation F.1; i.e.,

2p<0.05 = Tp=0.80 T Tp=0.975 = 0.842 + 1.960 = 2.802. (F3)

Assuming that n, = 1.6ny, ¥ = 0.0624 and 7 = 0.0461, as was approximately the case for the retrospective

data, Equation F.1 has one remaining unknown: n,. This can be isolated:

2.62%52

Finally, the estimate of the total number of patients required in a prospective study would be n =

Ng +ny = 2.6n, = 68.
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