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Identifying overlapping communities in networks is a challenging task. Inwligk we present a novel
approach to community detection that utilizes a Bayesian nonnegative rfattorization (NMF) model to
extract overlapping modules from a network. The scheme has thetadeaof soft-partitioning solutions,
assignment of node participation scores to modules and an intuitivedtandWe present the performance of
the method against a variety of benchmark problems and compareatrest it to several other algorithms for
community detection.

I. INTRODUCTION ‘fitness’ function (based on internal link density) by modi-
fying nodes’ community ‘appropriateness’ scores through a
Community structure, or modular organization, is a signifi-S€"es of inclusion-exclusion moves. The work of Evans and

cant property of real-world networks as it is often consider Lambiotte [12] detects communities of links — in contrast
to account for the functional characteristics of the system 0 node communities, which occupy the vast body of the lit-
der study [1-4]. Although the notion of ‘community’ appears erature [2, 3] — after losslessly transforming the adjagenc
intuitive [2, 3] (for example people form cliques in sociatn ~ Matrix to a line graph. By assigning links, rather than nodes
works and web pages of similar content have links to one an@M0ng communities, the method allows a node to participate
other) there is no disciplined, context-independent digimi  naturally in more than one group, as determined by the la-
of what communities are [2, 4]; we adopt here the loose defibels assigned to its adjacent links. The advantages ofphls a
nition that these modules are subgraphs with more links corProach have also been presented by Afral.in [13]. Fi-
necting the nodes inside than outside them [2, 3, 5]. The taskRally: Nepuszet jal-[14]' propose that communities should
of identifying such subgraphs in a given network can be chal€0mprise similar’ nodes, assuming that a distance megic b
lenging [1, 2], both in terms of recognition and computagion tween nodes is defined ar_u_al that S|mllar|ty is mversely eglat
feasibility. to distance. When a partition matrix, representing a reason-
One of the key issues in community detection is describ@P!€ community partition, is multiplied by itself it woultién
ing the overlapping nature of network modules. Traditionalbe exPeCted to appIrOX|mateT the s!m|lar|ty matrix; this ke
‘hard-partitioning’ algorithms [6-9] may yield excelleiden- & nonl|ne_gr constrained optimization problem_. T_he number o
tification results, but omit the important characterisficenl- ~ cOMmubnities of the proposed incidence matrix is selected by

world networks where a node may participate in more tharP€rforming muitiple runs and selecting the one with the high
one group (for example, individuals belong to various so-estfitness score based on a Newman modularity-like function

jurther discussion on similar methods, along with a compre-

cial circles and scientists may participate in more than on 3 X . ! ; .
research group). A popular approach to tackle this problen ensive review of community detection algorithms in gehera

is the Clique Percolation Method (CPM) by Padiaal.[10], IS Presented in a survey by Fortunato [2].
which is based on the belief that communities are unions
of adjacentk-cliques (complete graphs with nodes) and
that inter-community regions of the network do not possess
such strong link density. Because communities are defined 3R

tzle. Ia(ra%essr:;_erfworli ﬁg?epsongn;ﬁgn;a;?.'gg r?e(\jt]ardzﬁlmggt(\e;eentive matrix factorization (NMF) [15]. The advantages ofsthi
(cliqu ing: — ), overlaps ari urafly methodology are: i) overlapping or soft-partitioning saus,

VrCi?f?l\Jl\llZZk (:F;ierformance mag be compromlseg for neltV\;torka/here communities are allowed to share members; ii) soft-
que presence, because many nodes are 1e c)"H‘Iembership distributions, which quantify ‘how stronglga
or for. qetworkg with very h}gh link density, becaust_a we reacr\ndividual participates in each group; iii) excellent méslu
tmhﬁr;[irt';'al solution of describing the network as a singleneo identification capabilities; and i_v) the. m.eth(_)d does nofesuf
: . . ... fromthe drawbacks of modularity optimization methods hsuc
Other appr_oaches include the al_gorlthm of LanC|ch|n_ett|aS the resolution limit. In the following section we prestnat
et al.[11], which seeks a local maximum of the community o retical foundations of our approach along with anfteus
tive example to provide intuition behind the method. Follow
ing the model formulation section, we test our algorithm on
a variety of artificial and real-world benchmark problemd an
* ioannis.psorakis@eng.ox.ac.uk present our experimental results.

In this work we propose a novel approach to community de-
ction based on computationally efficient Bayesian noaneg
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Il. MODEL FORMULATION ors [18] with scale hyperparameteBs= {5} on the latent
variablesw;y, hy;, as presented in [15]. By starting with a
A. Generative Model large K (say N, which is the maximum possible number of

communities), the effect of these priors is to moderate com-
Qplexity by ‘shrinking’ close to zero irrelevant columns W

and rows ofH that do not contribute to explaining the ob-
served interaction¥. This is achieved by placing a distribu-
tion over the latent variables;;, hy; whose expectation ap-
proaches zero unless non-zero values are required by the dat
This approach avoids the computational load of multiplesrun

we can define allocations of nodes to communities as laterft"d 1S frée of the resolution bias problems [19] of modujarit

(unobserved) variables that allow us to explain the in@éas _Based on the graphical model of Fig. 1, where the distribu-
interaction density in certain regions of the network: traren 10N Of 5. is parameterized by fixed hyper-hyperparameiers

two individuals interact the more likely they are to belong t andb, we express the joint distribution over all variables as:

the same communities, and vice versa. p(V,W.H, B) = p(VIW, H)p(W|@)p(H|B)p(3), (1)

We consider the generative graphical model of Fig. 1. Th
observed variable;; denotes the nonnegative count of inter-
actions between two individuals; in a weighted undirected
network with adjacency matri% € RY*~. In the commu-
nity detection context, we assume that there are a nudilr
‘hidden’ classes of nodes in the network that affegt Thus

hence the posterior over model parameters given the observa

a hk j tions is:
N, —~ 1 ‘ _ p(VIW, H)p(W|B)p(H|B)p(B)
b g
K Wik N B. Posterior-based cost function

_ _ _ _ We aim to maximize the model posterior given the observa-
FIG. 1. (Color onllne) Graphlcal model showmg the generatlontions, or equiva|ent|y’ to minimize the negative |Og pas‘er
of count processed¥ from the latent structur& and H, the which may be regarded as an energy (or error) function
components of which have scale hyperparameters The hyper-  \oting thatp(V) is a constant w.r.t. the inference over the

hyperparameters, b are fixed. model’s free parameters, we hence define:

We assume that the pair-wise interactions described iy — — log p(V|W, H)—log p(W|3)—log p(H|3)—log p(B),
V are influenced by an unobservegpectation network/, 3
where eachy;; denotes the expected number of interactionswhere the first term is the log-likelihood of our data, dedive
(or expected link weight) that take place betweamdj. The  from the probabilityy(V|W, H) = p(V|V) of observing ev-
expectation network is composed of 'Ewo nonnegative ma;triceery interactionw;; given a Poisson raté;. Therefore we ex-
W € RY*¥ andH € RF*" so thatV = WH. We hence press the negative log-likelihood of a single observatign
model each interaction;; as drawn from a Poisson distribu- as:

tion with rated,; = Zlewikhkj. The inner rankK de-

notes the unknown number of communities and each element —logp(v[9) = —vlogd + ¥ + logv!. 4)
k € {1,..,K}inrowi of W and columnj of H represents _ - o
the contribution of a single latent communityg. In other Using the Stirling approximation to second order, namely:

words, the expected number of timgs that two individuals

1, j interact is a result of themutual participationin the same 1

communities. logv! ~ vlogv — v + = log(2mv), (5)
In the typical community-detection setting, the valuggf 2

which we callcomplexityor model orderis initially unknown.

In previous work [16, 17], the issue of inferring the appiepr

ate number of communities has been addressed by performing v 1

multiple runs for variouss and selecting one that yields the ~ —10gp(v[0) ~ vlog (5) +0—v+ 5 log(2mv),  (6)

highest Newman modularitg) [5]. In our setting, the ap-

propriate model order arises naturally fronsigle run, by  thus the full negative log-likelihood for all the observeatal

placing shrinkageor automatic relevance determinatiqomi- is:

Eq. (4) can be written as:



N N
—logp V‘V Z ng v2]|vlj

wherex is a constant.

Following [15] and similar models for probabilistic PCA
[20] and ICA [21-23], we place independent half-normal pri-
ors over the columns oW and rows ofH with precision
(inverse variance) parametedse RX = [3y, ..., Bx]. The
negative log priors oveW andH are then given by:

N K
—logp(W|B) = > log HN (0, 5,1
=1 k=1
Yy <2gkw3k) ~ 5 log By + 1, (8)
=1 k=
K 1N
—logp(H|B) = — Z ZlogHN(O, Bet)
k=1 j=1

> (3

2
=1j=1

Mw

N
Bkh%j) Y log Bk + £.(9)

b

Eachg;, controls the importance of communikyin explain-
ing the observed interactions; large valuesigfdenote that
columnk of W and rowk of H have elements lying close to

zero and therefore represent irrelevant communities. By as

suming thes;, are independehtwve place a standard Gamma
distribution over them with fixed hyper-hyperparameters
[25]. The negative log hyper-priors are thus:

K
— "log G(Ba,b)

k=1

—logp(B) =

K
Z Brb — (a —1)log Bx) +

k=1

(10)

The objective functiod/ of Eq. (3) can be expressed as the
sum of Eq. (7) through (10):

U= ZZ[vwlog( )+v4
3| (S > it

+ ) (Bibr — (ax — 1) log B) + &.
k

— 2N log By

(11)

1 This corresponds to the belief that the existence of one coritynismot
dependent upon others. Clearly, there will be situationstich this can
be extended to allow for a full inter-dependency between conities. We
do not consider this here, however. Allowing dependencynidiar to the
notion ofstructure priorsdiscussed in [24].

i=1 j=1

1
(’UU log T I 4 Vij — Vi + B log(27m)ij)> + K, @)
Vij

C. Parameter inference

To optimize Eq. (11) foW,V and 3 we follow [15, 26—
28] by adopting the fast fixed-point algorithm presented in
[15] that involves consecutive updates\af, H, and 3 until
a convergence measure has been satisfied (a maximum num-
ber of iterations, or a tolerance on the cost function). The
pseudocode is presented in Algorithm 1; we discuss mem-
ory and computational efficiency in the discussion section
of this paper. The solution consists W, € RY**+ and

H, € RN forwhichV = W, H, represents the expecta-
tion network given our observation dataand prior assump-
tions. The inner rank, denotes the inferred number of latent
modules in the network.

Algorithm 1 Community Detection using NMF

Require: adjacency matriv € R} *", initial Ko, fixed Gamma
hyperparameters, b.

Define: matrix operationss aselement-by-elemeulivision.

Define: matrix operationX - Y aselement-by-elememhultiplica-
tion.

Define: B € RX*X as a matrix with elements,, in the diagonal

and zero elsewhere.

1: Auxiliary inputs W, Hy from previous runs.

initialise to random values.

for 4 = 1 t0 nijter do

H
H (WT1+BH

If not present,

2:
3:

D Bk — Y SRR

4
5
6: end for

7: K, + # of non-zero columns dW or rows of H
8: W, + W with zero columns removed

9: H, + H with zero rows removed

0

10: retun W, € RY*%- H, € RFE-*N

In the case of undirected graphd], = H/ (asV is sym-
metric) and represents théx K, incidence matrix of a bipar-
tite graph ofV nodes and<, communities. Each elemeat;,

(or hy,) denotes theegree of participatiof individual into
communityk while each normalized row oW, (or column

of H,)) expresses soft-membershigistribution over commu-
nities given a certain node. Therefore this bipartite grdgh
scribes theoverlappingmesoscopic structure of our network,
where nodes are allocated to multiple groups with varyirrg pa
ticipation score.

The overall interaction matri¥ is approximated by a sum
V= > p whhy., wherew?, is the column and} . row vector
of the community matriceSV, andH, respectively. There-
fore, V is a summation o rank 1 matrice&v*) = w* h}.
and eachV (%) denotes the expected number of pairwise in-
teractionsin the context of community. Thus if two nodes



i,j have non-zero participation rates; , i ; to community  extremal 1 2 3 4 56 7 8 |9 101112 1314 15 16
k, then the average link weight for this dyad would also bg ©rtimization

non-zero due &7\ = wy, hj . —
Based on the above, our model assumes that the joint mer

bership of two nodes in the same community raises the probispectral 1 2 3 4 5)6 7 8 o 1011 12 1312 15 16

bility of a link existing between them. Therefore, our matho Partitioning ‘

performs best when modules are dense, with the best-ca

scenario being that each community is a fully connected suk

graph.

. . . -Cli 1
In the next section, we present an illustrative example o Jce | RRY N EEEEE
this community extraction scheme, followed by experimenta \
results from various artificial and real-world networks. 9.
Loha
Il. APPLICATIONS FIG. 3. (Color online) Node allocations to communities for three

different community detection methodologies.

A. Anillustrative example

2]\ 1 3 o i
Consider the small toy graph of Fig. 2 wifti = 16 nodes l,é B 5 / |
andM = 25 edges of varying weights. We extract the meso- " I/ 3" Y%l
scopic (community) structure of this network using NMF, L \6 o/ \,/"12 14|
along with the popular Extremal Optimization (EO) [9], Spec L —="% ‘
tral Partitioning (SP) [29] and Weighted Clique Percolatio :
Method (WCPM) [30]. 4 q
\
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6 ~=—" 10 \‘\14 FIG. 4. (Color online) Our toy graph decomposed g = 4
/ N\ overlapping communities using NMF.
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network [2].

FIG. 2. (Color online) An undirected weighted toy graph with 16  Allocating nodes to multiple modules, as in Fig. 4, is only

nodes. The three different line styles denote the differing strengthene part of the solution. We also capture ttegree of par-

of interaction within each pair of nodes. ticipation of nodes in each community by using the incidence
matrix W, described in the previous section. Fig. 5(a) shows

16x4 : o ;
Although a trivial problem at first glance, each community Wx € R"™" where different colours indicate various levels
detection method we applied yielded different modules an@®f Participation of nodes in communities. We can see that the
node allocations, as seen in Fig. 3. Hard-partitioning wesh matrix is not of a clear block diagonal form, as an individual

such as EO and SP produce such inconsistencies mainly dG&n have some form of membership in multiple groups.
to the ‘broker’ nature of nodes such &9 or 10 that lie on In our framework, community allocation is not a Boolean

high-flow paths in the network, making them difficult to as- d€cision but ebelief; each node is assigned a membership
sign on one module or the other [2]. Although this issue jsdistributed over communities, as seen in F|g.'5(b).. We can
addressed by wCPM, which allows node membership to mulS€€ that mediator nodes of high ‘betweenness’, such-as,
tiple modules, it does not provide some measure of ‘padicip ‘haye a morye entropl_c distribution (S|m|_lar to the concept of
tion strength’ or ‘degree of belief’ in membership. bridgeness’ [14]) while for nodes suchas- 4 ori = 14 we
By applying NMF we extracte&’, — 4 overlapping groups have much more confident allocations.
as shown in Fig. 4. We can see that our method does not
force node allocations to a single group, but instead allows

the ‘broker’ individuals described above to participatenare B.  Benchmark graphs with community structure
than one community. Thisoft-partitioningsolution allows us
to describe the different aspects of an individual's sdgial Having soft-membership distributions not only allows us to

as a collection of (possibly intersecting) sets of nodegreh describe our confidence in assigning néde communityk,
each set may play a different role or function in the wholebut also to quantify the degree of ‘fuzziness’ in the network
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FIG. 6. (Color online) Fig. 6(a) compares the NMF (dashdihe

. . . at the top) approach against Extremal Optimization (EO) (p&le
FIG. 5. (Color online) Fig. 5(a) shows the node allocations proposeging gt the top), Spectral Partitioning (SRYline) and Hierarchical

by our algorithm. Colours close to white indicate strong partici- ¢j,stering (Hierarchical)line) in identifying the communities of
pation of nodei (vertical axis) to community (horizontal axis).  Newman-Girvan artificial graphs. Each point is the mean of 100

Fig. 5(b) shows example (normalized) rowsWf. that correspond  granh realizations. Fig. 6(b) shows the increase in uncertainty in as-

to the membership distribution of different nodes. signing nodes to communities, as we increase the fuzziness of mod-
ular organization in NG graphs. Each point is the mean of 100 graph
realizations.

In Fig. 5(b), nodes such as= 6 that lie on community bound-

aries have a membership distribution that is closer to amifo
We hence expect our method to indicate networks with littlebership distribution. We can see that as we make the net-
degree of modular organization. We apply the NMF methodwork fuzzier by increasingk,.:), our method ‘responds’ by
to realizations of the very popular Newman-Girvan (NG) ran-increasing the degree of node participation to multiple com
dom graph [31]. This benchmark tests the module identifi-munities. An attractive aspect of this test is that the iasee
cation capabilities of a method against an artificial graph oin entropy (see Fig. 6(b)) does not affect the module identifi
N = 128 nodes, observed solution 6f = 4 communities cation performance (we see from Fig. 6(a) that NMI remains
(with n = 32 nodes each), average degre€/of = 16 and a  close to unity) and is stable for the vast majority b§,.;) val-
variableinter-communitydegreek,,,;) that controls the mod- ues. For comparison, we also provide in Fig. 6(a) the NMI
ule cohesiveness of the network. performance of some popular hard-partitioning methods: Ex
In Fig. 6(a) we plot our module identification performance tremal Optimization [9], Spectral Partitioning [29], andek
based on the Normalized Mutual Information (NMI) criterion archical Clustering [2]. For hierarchical clustering, alzg
[32], a real number between 0 and 1 which is maximal wherdistance acted as node similarity and complete-linkage- clu
the detected communities exactly meet expectations. In 6(kdering acted as group similarity; this combination has been
we monitor our allocation confidence based on the mean erempirically found to be optimal [2].
tropy (in bits)H = — Zle wjk log, w;y, of each node mem- We extend the above test to the case of Lancichinetti-



Fortunato random graphs (LFR) [33], which reflect more ac-

curately the properties of real-world networks. In this-set § I S 'Q' ..

ting, community cohesion is controlled byixing parame- & qp-"‘? “““ g ““““““ Q.. i

ters yu;, and ui,,, which denote the expected fraction of inter- % 0.95; ) = A
community degrees and weights per node. Other configura |
tion parameters include the total number of nodeshe av- 5 0.9+ \‘ i
erage degreék), the exponent of the degree distribution % '
and the exponent of the community-size distributign We = 085 '
tested our method for a (decaying) range of valuesfQh.., 3 -o= <k>=15

(where we selir, = ), in weighted graphs oN = 1000 A oo <k> = 20

nodes and various values ¢f), as seen in Fig. 7(a). In the g 0.8 <k>=25

same spirit as the NG graph case, in Fig. 7(b) we monitor theg

mean entropy of membership distributions per node (in bits)
. ) - 1 2 3 4 5 6.

to quantify the confidence of our node allocations to commu- H, = H,, degree and weight mixing coefficient

nities. In Fig. 7(a) we can see that our model has an excellern

module identification performance and starts to fail onlyewh

the mixing coefficientg:, have values greater than 0.5, denot-

(a)Normalized Mutual Information, value range 0-1.

ing no community organization in the graph. On the other
hand, the increasing fuzziness of the network (based)ds - -om<k>=15 .
captured in the mean entropy of the membership distribstion £ 2.5 | = <k>=20 R
as the community structure is less cohesive, we are less coni i’ <k>=25 ,,9"\«
dent in the allocation of nodes to groups. i ot ‘—.x\' o
5’ A
| | E 1.57 ‘\;\,“‘/kﬁ
C. Real-world datasets = .»;5"
H o % 17 &"
We present the performance of our community detection <
method on a variety of popular benchmark datasets and con 8
pare it against the Extremal Optimization (EO) [9] and Lou- 1 2 3 .4 .5 6
vain [6] methods. In contrast to the artificial graphs we used K= Hy degree and weight mixing coefficient
above, the absence of an ‘observed solution’ for these prob- (b)Mean entropy of membership distribution.

lems prevents us from using the Normalized Mutual Informa-
tion criterion for performance evaluation. Instead we unee t
popularmodularity @ [5], which is a measure of how ‘sta- FIG. 7. (Color online) Results of the NMF method on realizations
tistically surprising’ the intra-community link densitg for  of the LFR random graphs faV = 1000 and different values for

a proposed network partition. For the purposes of the expethe average degréé) and community cohesion parameters. Each
iment, we remove the overlapping aspect of the NMF So|upc_)int _represents the mean and standard deviation over 100 graph re-
tions by assigning a node to a single community; the one foglizations.
which it has the maximum degree of membership. Although

this ‘greedy allocation’ scheme omits the wealth of informa

tion provided by our model solutions, it is necessary in orde |
to perform modularity comparisons against hard-partitign

TABLE |. Real world datasets
Datasef N[ M|

methods. Comparison with Clique Percolation is also absent Dolphins [34] * 62 159

. . ) C Books US Politics [35] 105 441
as it provides a uniform participation score of nodes to mod- Les Mirables [36] 77| 254
ules, thus no ‘greedy allocation’ can by applied. For each College Football [31] 115 613
dataset, we ran the three methods 100 times, recording the Jazz Musicians [37] 198| 2742
values ofmodularity Q along with the number of extracted C. elegans metabolic [9]453| 2025
communitiesk,. The values are reported in Tables Il and III; Network Science [9]1589| 2742
because the Louvain method demonstrated stable behaviour Facebook Caltech [38] 769| 16656

across different runs, its standard deviations have been om

ted. For NMF initialization we use&, = N with hyperpa-

rameters: = 5 andb = 2, giving a vague prior. We note that nally, although our method favours sparse solutions, isdoe

the results are not very sensitive to changes in these values not suffer from the resolution limit [19] of modularity op-
From Table Il we can see that our approach performs comtimization methods such as EO, where smaller groups are

petitively despite not being designed with the aim of maxi-merged together [3, 19], leading to a smaller number of com-

mizing modularity, unlike EO and the Louvain method. Ad- munities, as seen in Table IlI.

ditionally, it has the advantage of providisgft-partitioning Figure 8illustrates the first network in Table I, in whichver

solutions and nodmembership scorde each community. Fi- tices are situated according to the Kamada-Kawai freeggner



TABLE Il. Modularity results for NMF, EO and Louvain methods A e .O .‘. ® [
| Datasef NMF] EO[Louvain| OQ 00° o4 .
Dolphins{0.47+ 0.03/0.51+ 0.01] 0.52 %(’
Books US Politics 0.52+ ¢]/0.484+0.01] 0.50 &
Les Mistrables0.53+ 0.02/0.53+ 0.01] 0.57 * 9
College Football 0.60+ ¢|0.58+ 0.01] 0.60 ﬁ ® .
Jazz Musiciang.434 0.01/0.42+ 0.01 0.44 g ® PS
C. elegans metabolj©.36+ 0.01{0.40+ 0.09 0.43 L
Network Scienc¢0.83+ 0.01/{0.86+ 0.01]  0.95
Facebook Calted®.38+ 0.01/0.37+ 0.01]  0.37
B o .DQ‘. ® o
TABLE Ill. Number of communities from the NMF, EO, and Lou- ® P oY ° ... °
vain methods @ 8 PS o0 ®
| Datasef NMF] EO[Louvain| e ’&
Dolphins| 6.67+ 0.83 410 5 ° ..‘E’O ® e
Books US Politics 6.23+0.62|  4.04+04 3 . o 0
Les Misrables 9.97+0.78 4.96+ 1.72 6 o P
College Football 8.86+ 0.79 8+0 10 oe *
Jazz Musicians 8.574+ 8.89 440 4
C. elegans metaboljc15.69+ 1.14| 7.96+ 1.06 10 FIG. 8. (Color online) The Dolphins network [34], with (A) hard
Network Science342.53+ 5.28/58.24+ 12.36 418 partitioning as per the Louvain method and (B) soft partitioning as
Facebook Caltegh24.28+ 1.72| 6.84+ 1.82 10 per the NMF method. Node size increases nonlinearly with vertex

degree, and soft partitions are shown as pie charts.

technique in Pajek software [39]. The hard partitioninghaf t

Louvain method can be contrasted with the soft partitioihg 0.3r

an example run of the NMF method, in which vertices near the 3 —<NMF
boundary of two or more communities are represented by pi --EO
charts in a manner similar to that used by Ralhl. [40]. With 0.2t Louvain
the aid of the aforementioned ‘greedy allocation’ scheine, t ——Spectral

NMF community assignments agree with the Louvain com-
munity assignments for 55 of the 62 nodes. Of the seven mis
matches, six correspond to the putative additional comtyuni

(here coloured dark green, in the dense central portioneof th
figure) postulated by the Louvain method; NMF replaces this of
tiny community with soft partitioning among the other com-

munities. The seventh mismatch occurred for a node con

0.17

modularity Q

nected to two red nodes and two pink nodes; the Louvair ~0-1f ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
method allocated it to the pink community whereas NMF al- 01 02 03 04 05 06 0.7 0.8
located it to the red and pink communities in the approximate probability p of pairwise connection

proportion of 51:49.
FIG. 9. (Color online) Modularity of network partitions of four com-
munity detection algorithms, ran on realizations of an ER graph fam-
D. Graphs without community structure ily G(100,p). Each point represents the mean and standard devia-
tion of modularity over 100 instances 6f(100, p).

We present the behaviour of NMF in cases in which there
is no community structure in the network, specifically focus
ing on the popular Erts-Renyi (ER) random graphs. In such munity structure when there is none. In Fig. 9 we compare
graphS, each link exists with a probab”ﬂy\/hmh is common NMF against three modularity—based methods: Extremal Op-
for any pair of nodes in the graph. Additionally, the prottabi timization (EO), the Louvain method, and Spectral Partitio
ity of link formation at a given pair of nodes is independenting, based on th€ value of their extracted network partitions,
of the presence of other links. This eliminates the tendémcy in realizations of an ER graph cla§s(100,p). We control
form closed triangles and cliques that characterize realdv the ‘network load’ (number of links in the graph) by changing
networks. the value ofp. For each value op we generate 100 graphs,
Therefore given various realizations of an ER graph fam”yrun Community detection with each algorithm, and record the
G(N p) (N number of nodes anﬁ probab|||ty of pa”' con- mOdUlarity values. The generated ER graphs we used have no
nection), we want our method to be able to capture such atisconnected components.
sence of mesoscopic organization, instead of declaring com In Fig. 9 we can see that EO (blacKine), Louvain (light
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dashed line) and SF¥line) produce significantly higher in our framework is the number of latent communities (or
modularity values than NMF (bottom-line), especially for  classes of nodes) in the data. We also showed that the degree
sparse realizations of the ErstRenyi random graph, denot- of participation of two individuals in various communitiés
ing the presence of modular organization. However, thosa latent generator of the expected number of interactions be
high @ values do not correspond to any community structurefween them.
as Erds-Renyi random graphs do not possess it by design. Following the model formulation section, we demonstrated
On the other hand, NMF has a more stable behaviour as alow NMF not only captures the membership of a node in mul-
modularity values are close to zero, indicating that nodeeh tiple communities, but also quantifies how strongly thai-ind
no ‘preference’ of being connected with members of the samegidual participates in each of the groups. By using the gytro
group or otherwise. Especially for the case of sparse graphsf the node membership distribution, we can identify ‘core’
with p ~ 0.1, EO and Louvain achieve higher modularity val- nodes in each community or, inversely, ‘broker’ nodes that
ues; in particular, they are very close@ = 0.3, a thresh-  act as mediators between different groups. At a global Jevel
old above which Newman and Girvan consider communitythe mean entropy of the membership distributions can help us
structure to be present [5]. This overestimation of modatar quantify the degree of ‘fuzziness’ in the network, or theitya
ganization can be very misleading, especially when stuglyin of community structure. Network visualization tools cascal
real-world networks which are usually sparse [41] due t@'the be improved in this manner, as the degree of membership over
power-law degree distribution. Therefore, if certain magu  different communities can be utilized to position an indisal
ity optimization methods produce high@rvalues than NMF,  in a cloud of nodes.
it might not mean necessarily that they have found a node con- \we also showed that NMF has a competitive performance
figuration that denotes better community structure. against popular community detection methods, on various
popular network datasets. Although NMF is not a method
aiming to maximize modularity@), it competes well with
IV." IMPLEMENTATION DETAILS AND COMPLEXITY methods that directly maximize modularity and we have
showed that it can even outperform these methods in several
As discussed in Section 11 C, parameter inference is permodule identification problems, while at the same time hgvin
formed by a series of update equations for the latent vasabl the advantage of providing soft-partitioning solutions.
in the model. The computational load is governed chiefly by This work addresses the issue of extracting community par-
the matrix multiplicationWH appearing in the denominator titions from a single interaction network defined ; We
of the element-by-element divisiog?; in steps 3 and 4 of acknowledge that in many problems, this matrix describes
Algorithm 1, which is of order®(N?K). In practice, such only a ‘snapshotV(®) of a time-evolving, dynamic complex
cost can be significantly reduced if we exploit the sparse nasystem. Therefore, we seek to extend our community detec-
ture of adjacency matrices [42]: the dot produkts wixhu; tion method to allow for a time-evolving solution space. At
within WH need not be calculated wher;, = 0, thus re- present we are approaching this via a jump-diffusion model
ducing significantly the effect of the quadratic tei inour  (based around a Markov model), in which rate parameters are
theoretical complexity expression. For the case of untBeec allowed to evolve with time and the structure of the commu-
networks, in whichV = VT, the dot product operations are nity solutions may also have abrupt changepoints [43]. Our
halved becaus® H is symmetric, and halved again becauseaim is to evaluate this approach in time-evolving systems in

step 4 of Algorithm 1 is redundan¥y = HT). order to model community drifts and the transitions from one
Holistic community detection methods such as NMF, whichcommunity structure to another.
operate upon the full adjacency matNk can be memory in-  Our current method produces point estimates for the model

efficient when implemented naively. The quadratic complex-parameters via anaximum a posterior(MAP) scheme. A
ity, O(N?), can be mitigated by loading into memory only fully Bayesian treatment can be employed via Reversible
certain columns/rows oV when needed, as no holistic op- Jump MCMC as presented in [44, 45], or via the use of varia-
erations (such as inversion or multiplication) are reqiiog  tional Bayes as derived in [45]. The advantage of a posterior
Algorithm 1 for V or V. In addition, all element-by-element distribution over quantities such as the inner rank dim@ansi
division and multiplication operations should be paraisd,  ality K is that we can see at which resolutions modular orga-
as there are no data dependencies among the threads. nization is most prevalent.
We also acknowledge that NMF, along with the majority of
community-detection methods, assumes a fully observed ad-
V. DISCUSSION AND FUTURE WORK jacency matrix. This is not the case in many real-world appli
cations in which data-collection limitations arise; fomexple
In the present work we described a novel approach to comwhen the system under study is sampled or when sensors fail
munity detection that adopts a Bayesian nonnegative matrito record every observation. However, NMF can be easily ex-
factorization model to achieve soft partitioning of a netkvo tended to allow for missing data [45].
in a computationally efficient manner. We have demonstrated Finally, in this paper we considered cases of undirected
how community detection can be seen as a generative modeétworks with symmetric interaction matric&. Although
in a probabilistic framework in which priors exist over the NMF does not allow the presence of negative links in the
model parameters. This enables model order selectionhwhiagraph, itis still possible to consider the popular casespira
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