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Abstract

Neuronal electrical oscillations play a central role in a variety of situations, such as epilepsy
and learning. The mapped clock oscillator (MCO) model is a general model of transmembrane
voltage oscillations in excitable cells. In order to be able to investigate the behaviour of
neuronal oscillator populations, we present a neuronal version of the model. The neuronal
MCO includes an extra input portal, the synaptic portal, which can reflect the biological
relationships in a chemical synapse between the frequency of the presynaptic action potentials
and the postsynaptic resting level, which in turn affects the frequency of the postsynaptic
potentials. We propose that the synaptic input—output relationship must include a power
function in order to be able to reproduce physiological behaviour such as resting level
saturation. One linear and two power functions (Butterworth and sigmoidal) are investigated,
using the case of an inhibitory synapse. The linear relation was not able to produce
physiologically plausible behaviour, whereas both the power function examples were
appropriate. The resulting neuronal MCO model can be tailored to a variety of neuronal cell
types, and can be used to investigate complex population behaviour, such as the influence of

network topology and stochastic resonance.

1. Introduction

Simulations of electrical oscillations in neuronal populations
have become ubiquitous in recent years, because of their
central role in a variety of topics from epilepsy to brain—
computer interfaces. Of course, any analysis of a network
of neurons will depend on the mechanism used to connect
cells to each other. Hence, many different descriptions of
chemical synapses have been introduced, such as the ones
by Liaw [1], Ermentrout [2], White [3], or Traub [4]. The
synapse model cannot be separated completely from the cell
model, so we must understand the latter before discussing the
synapse. Here we are concerned with modelling cells with
intrinsic oscillations, as opposed to using models that require
external inputs or network interactions to produce rhythmic
behaviour (for example variants of the Hodgkin—Huxley model
such as [3, 5-9]). Several mathematical oscillators have been
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proposed to describe cells with omnipresent rhythms [10-13],
most of them based on Winfree’s equations [14]. However,
these models can usually only reproduce cell behaviour
qualitatively, not quantitatively.

On the other hand, the mapped clock oscillator
(MCO), first described by Bardakjian [15], is a multiportal
generalization of the Winfree-type oscillator that is
quantitative in nature and exhibits refractory properties. Its
parameters can be obtained directly from the Fourier analysis
of the measured intrinsic transmembrane voltage waveform
of the uncoupled cell. Each oscillator consists of a dynamic
nonlinearity that governs the two fundamental state variables
of the system, and a static nonlinearity that maps those state
variables onto the observable output (figure 1). The dynamic
nonlinearity represents the clock mechanism of the oscillator.
The values of its state variables are modified by three input
‘portals’, each of which corresponds to a different type of

158


http://stacks.iop.org/JNE/1/158

A synaptic input portal for a mapped clock oscillator model of neuronal electrical rhythmic activity

MCO
So » = Pg
Sy M = Py Clock
S® ¥ . PO
u, = ocos(P) u, = osin(®)
L 4 N
Sp ™ *Pp  Mapper > Y

Figure 1. Mapped clock oscillator schematic.

coupling pathway (gap junctions, field effects and membrane
receptors). The static nonlinearity represents the cellular
membrane. It is this mapper (or transformer) that can be
changed to represent the waveform of the specific cell being
modelled. The MCO model has been previously used to model
electrical oscillations in gut smooth muscle [15]. However, our
recent studies have focused on neurons in the hippocampus and
the surrounding regions. Therefore, the purpose of this study
is to develop a neuronal MCO model. The improvements we
aim to make deal mainly with adding a fourth input portal to
model chemical synapses.

The simulations presented in this paper were all done
using two unidirectionally coupled MCOs. The effects of both
unidirectional and bidirectional coupling on the behaviour of
the MCO (with three input portals) and its predecessors have
been investigated in previous studies [11, 15-19].

2. Methods

The MCO model was created with the understanding that
some excitable cells can undergo rhythmic transmembrane
depolarizations. These nonlinear oscillators have an ‘intrinsic
frequency’, but are influenced by their environment, including
other nearby oscillators. Each oscillator has an ‘intrinsic
clock’, described by two differential equations:

o, = w”a,,(l — otﬁ) (1)

(i)n = Wy (2)

where «, is the amplitude, ¢, is the phase and w, is the
intrinsic frequency of the clock output for the nth oscillator
in a population of N oscillators. Transforming from polar to
Cartesian coordinates using

Ulp = Ay Sin(¢n) (3)
Uy = Oy COS(¢n) (4)

and adding the effective stimuli (S, Sy, S, 1 and S,») applied
to the clock’s three input portals (P, Py and P, in figure 1),
we get the following dynamic nonlinearity:

1 = @y [, (14 Spn) + 11, (1 + San — ui, — u3,)] + Sy1n
(5)
oy = wn[_uln(l + Sq’)n) +u2n(1 + San - M%n - M%n)] + Sy2n-

(6)

In previous versions of this model [15], the Cartesian form
was used, mainly for historical reasons (e.g. [20]). However,
the polar form is more computationally efficient and is also
more intuitive for a model whose central component is a
clock. Therefore, in this study we will revert to the polar
form. Converting the Cartesian form (including portals) to
polar coordinates, and adding a refractoriness function, we
obtain

a.n = a)nan(l + Som - 05,3) + Syln Sin(¢n) + S)/Zn COS(¢n) (7)

. 1
¢n = wn(l + Rn (¢n)S¢n) + a_(Syln COS(¢n) - SyZn Sin(¢11))'
®)

In this study, ¢,, and a,, are forced to be non-negative (i.e.
negative values are set to zero). The state variables of the clock
are then mapped onto an observable output, y,, which is also
affected by the effective stimulus (S,) applied to the mapper
through its synaptic portal (P, in figure 1):

K
i = don(1+ Spn) + &ty Y[ Tr(cOs(¢n)
k=1

+ bip sin(¢py) Ug—1 (cos ()] ©))

where

e y, represents the transmembrane voltage.

e ay, is the intrinsic resting level.

® dy,, by, are the Fourier coefficients of the waveform of
the intrinsic oscillation.

e T; and Uy are the kth Tchebychev polynomials of the 1st
and 2nd type, respectively.

e k is the harmonic index. In this study, K = 500.

® Su, Sy, Sy1, Sy2 and S, represent the inputs to the four
different portals of the oscillator. If the oscillator is
uncoupled, then these are all zero.

e R, (¢,) is the refractoriness function, which ensures that
the neuron stops being sensitive to frequency inputs while
itis bursting. It is implemented as a highpass Butterworth
function as shown in the following equation:

1

1+(2¢%

In this study, » = 0.15 and N = 10.

R, (¢n) = (10)

)2N'
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The Tchebychev polynomials are used in the static
nonlinearity of the mapper because in the absence of any
stimuli (S, = Sy = S,1 = Sy2 = §, = 0) the resulting
static nonlinearity reduces to a standard Fourier series [15].
The parameters of the static nonlinearity are the Fourier
coefficients. Hence, the measured transmembrane voltage
waveform of an uncoupled biological oscillator can be
analysed in a Fourier series to determine the model parameters
of the mapper. To determine the intrinsic parameters for
this project, previously recorded data from a rat hippocampal
slice were used [18]. The slice was bathed in a low-calcium
medium, which greatly diminished the synaptic transmission
between neurons, thereby eliminating the synaptic stimuli and
moving the neurons closer to their intrinsic state. In this
study, since the electrical recording from the hippocampal
slice under low-calcium conditions was well characterized by
a Fourier series, we may assume that it represents the output
of an intrinsic MCO. Each MCO may represent either a single
bursting neuron or a synchronous population of neurons, as
long as the output can be characterized by a Fourier series.

Each of the four input portal stimuli S, in (7)-(9)
corresponds to a different type of biological stimulus or
coupling, and therefore affects the model differently. The gap
junction portal P, provides the means for direct interaction
between the intracellular clock variables of coupled cells,
thereby allowing for a context of continuity between the
intracellular media of the two cells. The field coupling
portal Py provides the means for modifying the phase of the
oscillations, allowing for a context of phase resetting of the
clock [14]. The receptor portal P, provides the means for
modifying the amplitude of the oscillation, allowing for a
context of dose—response amplitude characteristics [14]. If the
rate processes of the clock variables are represented in polar
form (as described in [14, 15]), then it becomes apparent that
the application of a stimulus through either the field coupling
portal P, or the receptor coupling portal P, would have a
direct effect on the rate of change of either phase or amplitude,
respectively. The synaptic coupling portal P, provides the
means for modifying the resting level in a postsynaptic cell
according to the frequency of oscillations in a presynaptic
cell, thereby providing for a context of frequency decoding by
the synapse. Note that changes in resting level may in turn
affect the postsynaptic frequency of oscillation by modifying
the rate of change of the clock phase ¢,. In general, for the
nth oscillator, having the set I,,,, of neighbouring oscillators,
the four input portals have the equations shown below in (11)-
(15).

Portal Py:
Conm Yn +a S + S 7
S¢n _ Zmel,m,( ¢nm Y 1) OnSpn Pne (11)
all
Portal P,:
m (Comm m +Sotne
Sn = 22cln CarmIn) (12)
On
Portal P,,:
Syln _ Zl’ﬂélnm (Cynma”; Sln(¢m)) + SV’“’ (13)
n
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Zmel (C}/nmam COS(¢m)) + Syne

Sy2n — nm 8 (14)
Portal P,:
Conm .m + Spne
Spn _ f Zmelw P ¢ P (15)
Sgn(QOn)wn

where

e 0, = (XK, (a2, +12,))"? is a normalization factor for
the mapper, representing the amplitude of the intrinsic
waveform.

e §, is a normalization factor for the clock.

e w, is the nth oscillator’s intrinsic frequency.

® ¢y, g, C, and c, represent the coupling factors between
the oscillators. They are real numbers between 0 and
1, where 1 implies that the corresponding portal is fully
open, and 0 implies that it is closed. The sign of ¢, is used
to distinguish between excitatory and inhibitory synapses.

e Yy, is the transmembrane voltage of the driving oscillator.

® Sunes Spnes Syne and S, represent the extrinsic stimuli
that are applied to the nth oscillator via the portals.

e The synaptic function f() is either (a) linear, (b)
Butterworth-type or (c) sigmoidal.

2.1. The synaptic model

The input—output relationship of the synaptic portal P,
is a relationship between the presynaptic frequency (¢,,)
and the change in the postsynaptic potential (ag,S,n).
This postsynaptic potential change in turn modifies the
postsynaptic frequency (¢,), as shown in (11) where S,
is included in the S expression.  This is meant to
reflect that postsynaptic depolarization (or hyperpolarization)
will increase (or decrease) the postsynaptic frequency of
oscillations.  Since S,, is a dimensionless quantity, it is
multiplied by ay, to give it units of voltage. A negative S,,
(which corresponds to a depolarizing effect because ag, is
negative for neurons at rest) increases Sy, and thus increases
the postsynaptic frequency of oscillations. Similarly, a positive
S,y corresponds to a hyperpolarizing effect, decreases Sy, and
decreases the postsynaptic frequency of oscillations.

The synaptic model is dependent on the synaptic function
f (), so we will investigate three possible functions.

2.2. Linear synaptic function

The simplest choice is a linear function with two parameters
{v1; v2}, as shown in (16). Our first set of simulations will
therefore use this implementation,

f(x) =vix +v. (16)

2.3. Butterworth synaptic function

Next, we will consider a highpass Butterworth function with
three parameters {v;; v,; v3}. The general form of the function
is given by the following equation:
vy sgn(x)
R oY
+ | —2—

xsgn(x)
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Figure 2. Output waveform of an unstimulated MCO.

2.4. Sigmoidal synaptic function

Thirdly, because of the omnipresence of sigmoidal-type
behaviours in neural networks, we choose a sigmoid function
with three parameters {v;; vp; v3}. The general form of the
sigmoid is given by

Jx) = [ (18)

1 +e(-mG—v)) 1} ‘
3. Results

Figure 2 shows the output of the MCO model in the absence
of stimulation. The simulation quantitatively corresponds
to the biologically recorded transmembrane voltage in CA3
pyramidal cells under low-calcium conditions, having an
intrinsic frequency of 1.275 Hz [18]. The normalization factor
3, is set to 0.1, and there are no applied extrinsic stimuli. The
differential equations were solved using numerical algorithms
(BSODE) based on Gear’s method [21-23]. Such a method
can deal with stiff differential equations, hence it can
successfully deal with all our simulation cases.

To illustrate the effects of the synaptic portal, two MCOs
were unidirectionally coupled via P, only. Both oscillators
had the same intrinsic parameters as described above, with the
exception of the intrinsic frequency of the driving MCO.

For a driving MCO frequency of 10 Hz, figures 3
and 4 show the outputs of the driven MCO when the
synapse is excitatory and inhibitory, respectively. Both of
these simulations used a Butterworth synaptic function with
the parameter set {v; = 1; v, = 9;v3 =4}. Note that the
postsynaptic frequency of the oscillations is affected as well
as the resting level, because of the S, term introduced into
the expression for S4. In the inhibitory case, the frequency is
reduced so much that the MCO does not oscillate during the
simulated time interval, but we could scale the effects through
the choice of v;.

Next, we compared the three types of synaptic functions
using the above example with an inhibitory synapse between
the two unidirectionally coupled MCOs. In the following

20
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Figure 3. Output waveform of an MCO stimulated via the input
portal P,(c, = 1).
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Figure 4. Output waveform of an MCO stimulated via the input
portal P,(c, = —1).

cases, the driving MCO frequency was swept from 1 to 35 Hz
(in steps of 1 Hz between 1 Hz and 15 Hz, then in steps of 5 Hz
between 15 Hz and 35 Hz). While all three synaptic functions
will result in the type of behaviour shown in figures 3 and 4,
the relationship between the presynaptic bursting frequency
and the postsynaptic resting level (and hence frequency) will
be different, as shown in the following sections.

To determine the parameter sets of the synaptic functions
and compare the three types, a reference synaptic curve was
selected. Since our mapper waveform was measured from
rat CA3 hippocampal neurons, our synaptic function must
be based on a resting level versus stimulation frequency plot
corresponding to such a cell. We used the NEURON software
package to obtain a simulated approximation of this plot. The
cell model used was one developed by Migliore et al [24]. The
parameter set (vi; vp; ...) of each synaptic function was then
chosen to model as closely as possible the same behaviour
(range of resting levels and slope of the curve).
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Figure 5. Resting level of the neuron’s transmembrane voltage in
response to pulse trains of synaptic stimulation, when the synaptic
function is linear.
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Figure 6. Resting level of the neuron’s transmembrane voltage in
response to pulse trains of synaptic stimulation, when the synaptic
function is a Butterworth function.

We simulated each system for 20 s, which is enough for
the resting level to stabilize. The resting level values reported
in figures 5 to 10 are the average values of the resting level
over the last 5 s of a given simulation. The postsynaptic resting
level is given by ao(1 +§,).

3.1. Linear synaptic function

For a linear synaptic function with the parameter set
{vi =1;v, =0}, the relationship between frequency of
stimulation and resting level is shown in figure 5, for an
inhibitory synapse. Clearly, the linear function is inappropriate
for modelling the physiological behaviour.

3.2. Butterworth synaptic function

For a Butterworth synaptic function with the parameter
set {v; =0.13; v, =9; v3 =4}, the relationship between
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frequency of stimulation and resting level is shown in figure 6,
for an inhibitory synapse. Figure 7 shows how the relationship
varies when the v, parameter of the Butterworth function
changes, and figure 8 shows how it varies when the parameter
v3 changes. The results suggest that this function is appropriate
for modelling physiological behaviour.

3.3. Sigmoidal synaptic function

For a sigmoidal synaptic function with the parameter
set {v; = 0.13; v, = 0.23; v3 = 2}, the relationship between
frequency of stimulation and resting level is shown in figure 9,
for an inhibitory synapse. Figure 10 shows how the
relationship varies when the v, parameter of the sigmoid
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Figure 9. Resting level of the neuron’s transmembrane voltage in
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function is a sigmoid.
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changes. The results suggest that this function is also
appropriate for modelling physiological behaviour.

4. Discussion and conclusions

The output of each MCO closely matches the biological
intrinsic oscillations measured under low-calcium conditions
(low-complexity modes of behaviour). Populations of coupled
MCOs were shown by our group [13, 18, 19, 25, 26] to
display biological characteristics under both normal calcium
conditions (high-complexity modes of behaviour [13, 18, 26])
and low-magnesium conditions (spontaneous seizure-like
activity [19, 25]). Applications of coupled MCO models
included influence of topology on complexity [26], stochastic
resonance and coherence [13]. The neuronal MCO allows
us to simulate the behaviour of oscillator neurons, but more

importantly it allows us to study networks of these cells.
The main strength of the model is not just how well it
reproduces the output of a single isolated cell, but rather how
precisely it can describe the coupling between such cells. By
having separate mechanisms for each possible type of coupling
(electrical, chemical, or field-based), we can better understand
the influence of each of them on population behaviours such
as entrainment, contact inhibition, or the appearance of high-
complexity (possibly chaotic) dynamics. This is an essential
feature for any neuronal model, since the CNS relies at its
most basic level on interactions amongst a vast number of
neurons. The presence of gap junctions and field effects in
the neuronal population has been shown to have a significant
role to play (e.g. [27, 28]), and so it is important to be able to
simulate their effects explicitly. Of course, the preponderance
of synaptic connections is undeniable, which is why the more
realistic and flexible synapse implementation introduced in
this paper is important for the validity of the MCO model.

The linear version of the synaptic function results in a
MCO resting level that is directly proportional to the frequency
of applied action potentials. Saturation cannot be achieved
without introducing some other mechanism, such as feedback.
In the absence of saturation, the resting levels achieved (for
example —1600 mV) are clearly not plausible, making the
linear synaptic function inappropriate for the simulation of
physiological data. With the two nonlinear functions, on the
other hand, we were able to achieve neuronal resting level
saturation without having recourse to any extra mechanisms.
These function types (highpass Butterworth and sigmoid) can
therefore be used to realistically model physiological data.
From a computational perspective, the highpass Butterworth
function may run into numerical difficulties since it includes a
variable argument which is raised to a power. Because of the
large range of values of 2, the raising to the power v3 can lead
to overflow or underflow conditions associated with computer
accuracies. This is avoided in the sigmoidal function.

A mapping between the presynaptic frequency and the
postsynaptic frequency was achieved via two processes.
First, the relationship between presynaptic frequency and
postsynaptic resting level was modelled using a static
nonlinearity (a saturating synaptic function such as a highpass
Butterworth or a sigmoid function). Second, the relationship
between the postsynaptic resting level and the postsynaptic
frequency was modelled using a dynamic nonlinearity (the
clock mechanism in the MCO).
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