
ECE521: 

Lectures 14-15 

With thanks to Russ Salakhutdinov

Mixture models,

EM algorithm



Outline

ÅMixture models: review and background

ÅBrief intro to graphical model pictures

ÅThe Expectation-Maximization algorithm



Mixture Models

ÅWe have looked briefly at a mixture model called the Gaussian mixture

model (lecture 4, eg slides 24-26)

ÅTo fit these models, the key idea is to use latent variables, which allow 

complicated distributions to be formed from simpler distributions.  

ÅWe will see that mixture models can be interpreted in terms of having 

discrete latent variables (in a directed ñgraphical modelò). 

ÅEarlier when learning PCA, we looked at continuous latent variables. 



Mixture of Gaussians (introduced in lecture 4)

ÅWe will look at mixture of Gaussians in terms of discrete latent variables. 

ÅThe Gaussian mixture can be written as a linear superposition of 

Gaussians:

ÅIntroduce K-dimensional binary random 

variable z having a 1-of-K representation:

ÅWe will specify the distribution over z in terms 

of mixing coefficients:



Graphical model pictures

ÅGraphical model = 

Multivariate Statistics + Structure

ÅDirected edges give causality relationships

ÅA supervised learning model might be: 



Graphical model pictures for a 

Gaussian Mixture Model



Graphical model pictures for a 

Gaussian Mixture Model



Mixture of Gaussians

ÅBecause z uses 1-of-K encoding, we have:

ÅWe can now specify the conditional distribution:

or

ÅWe have therefore specified the joint distribution:

ÅAnd we can derive the marginal distribution over x we saw earlier:

ÅThe marginal distribution over x is given by a Gaussian mixture.



Mixture of Gaussians

ÅThe marginal distribution: 

ÅIf we have several observations x1,é,xN, it follows that 

for every observed data point xn, there is a corresponding 

latent variable zn.   

ÅLet us look at the conditional p(z|x), responsibilities, which 

we will need for doing inference: 

ÅWe will view ḱ as prior probability that zk =1, and ɔ(zk) is the 

corresponding posterior once we have observed the data. 

responsibility that 

component k takes for 

explaining the datum x



Example

Å500 points drawn from a mixture of three normal distributions

Samples from the joint 

distribution p(x,z).

Samples from the 

marginal distribution p(x).

Same samples where 

colours represent the 

value of responsibilities.  



Maximum Likelihood

ÅRecall from lecture 4 (slide 27). Suppose we observe a dataset {x1,é,xN}, 

and we model the data using a mixture of Gaussians. 

ÅWe represent the dataset as an N by D matrix X. 

ÅThe corresponding latent variables will be represented and an N by K

matrix Z.

ÅThe log-likelihood takes the form:

Graphical model for a Gaussian mixture 

model for a set of i.i.d. data point {xn}, and 

corresponding latent variables {zn}.   

Model parameters

ÅHow might we maximize this?



Maximum Likelihood

ÅThe log-likelihood:

ÅDifferentiating with respect to µk and setting to zero:

ÅWe can interpret Nk as effective number of points assigned to cluster k.  

ÅThe mean µk is given by the mean of all the data points weighted by the 

posterior ɔ(znk) that component k was responsible for generating xn.   

Soft assignment



Maximum Likelihood

ÅThe log-likelihood:

ÅDifferentiating with respect to Ɇk and setting to zero:

ÅMaximizing log-likelihood with respect to mixing 

proportions:

ÅNote that the data points are weighted by the 

posterior probabilities. 

ÅMixing proportion for the kth component is given by the average 

responsibility which that component takes for explaining the data.  



Maximum Likelihood

ÅThe log-likelihood:

ÅNote that the maximum likelihood does not have a closed form solution. 

ÅParameter updates depend on responsibilities 

(ɹznk), which themselves depend on those 

parameters: 

ÅIterative Solution: 

E-step: Update responsibilities ɔ(znk). 

M-step: Update model parameters ḱ, µk, Ɇk, for k=1,é,K.  



Recall: K-Means Clustering (lecture 11)

ÅLet us first look at the following problem: Identify clusters, or groups, of 

data points in a multidimensional space. 

ÅWe would like to partition the data into K clusters, where K is given. 

ÅWe observe the dataset                      consisting of N D-dimensional 

observations 

ÅWe next introduce D-dimensional vectors, prototypes, 

ÅWe can think of µk as representing cluster centers. 

ÅOur goal: 

- Find an assignment of data points to clusters.

- Sum of squared distances of each data 

point to its closest prototype is at the 

minimum. 



Recall: K-Means Clustering (lecture 11)

ÅFor each data point xn we introduce a binary vector rn of length K (1-of-K

encoding), which indicates which of the K clusters the data point xn is 

assigned to.

ÅDefine objective (distortion measure):

ÅIt represents the sum of squares of the distances of each data point to its 

assigned prototype µk. 

ÅOur goal it find the values of  rnk and the 

cluster centres µk so as to minimize the 

objective J. 



Recall: Iterative Algorithm (lecture 11)

ÅDefine iterative procedure to minimize:

ÅGiven µk, minimize J with respect to rnk (E-step): 

which simply says assign nth data point xn to its closest cluster centre. 

ÅGiven rnk, minimize J with respect to µk (M-step): 

Set µk equal to the mean of all the data points assigned to cluster k. 

Number of points 

assigned to cluster k.

ÅGuaranteed convergence to local minimum (not global minimum).  

Hard assignments of 

points to clusters.



Recall: Example (lecture 11)

ÅExample of using K-means (K=2) on Old Faithful dataset.



Mixture of Gaussians (quickly mentioned in lecture 11)

ÅIllustration of the EM algorithm (much slower convergence 

compared to K-means) 



Summary of the EM algorithm for GMMs

ÅInitialize the means µk, covariances Ɇk, and mixing proportions ḱ. 

ÅE-step: Evaluate responsibilities using current parameter values: 

ÅM-step: Re-estimate model parameters using the current responsibilities:

ÅEvaluate the log-likelihood and check for convergence. 


