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Mixture models,
EM algorithm

With thanks to Russ Salakhutdinov



Outline

« Mixture models: review and background
* Brief intro to graphical model pictures
» The Expectation-Maximization algorithm
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Mixture Models

* We have looked briefly at a mixture model called the Gaussian mixture
model (lecture 4, eg slides 24-26)

* To fit these models, the key idea is to use latent variables, which allow
complicated distributions to be formed from simpler distributions.

« We will see that mixture models can be interpreted in terms of having
discrete latent variables (in a directed “graphical model”).

 Earlier when learning PCA, we looked at continuous latent variables.



MiXture Of GaUSSianS (introduced in lecture 4)

« We will look at mixture of Gaussians in terms of discrete latent variables.

» The Gaussian mixture can be written as a linear superposition of
Gaussians:

K
p(x) = > TN (x|, Bic).

k=1 e
» Introduce K-dimensional binary random i -;_.'
variable z having a 1-of-K representation: _--'-_1.35:‘;'@._. it -
k: a ET) ) i

» We will specify the distribution over z in terms
of mixing coefficients:

p(Zk:U:’ﬁk, 0<m <1, Zﬂkzl-
k



Graphical model pictures

* Graphical model =
Multivariate Statistics + Structure

* Directed edges give causality relationships
* A supervised learning model might be:

X Y
O O




Graphical model pictures for a
Gaussian Mixture Model



Graphical model pictures for a
Gaussian Mixture Model




Mixture of Gaussians

« Because z uses 1-0f-K encoding, we have:

K Z
= H mr.
k=1
« We can now specify the conditional distribution'
p(X|Zk — 1) — N(X|’1’ka Ek) or p X| HN X|u’k72k) . X

k=1
» We have therefore specified the joint distribution:

p(x,2) = p(x|z)p(z).
« And we can derive the marginal distribution over x we saw earlier:

— ZP(Z)}?(X|Z) = Zﬂ'kN(X‘Vka ).

k=1
« The marginal distribution over x is given by a Gaussian mixture.



Mixture of Gaussians

» The marginal distribution:

K

p(x) = > p(z)p(x|z) = > "N (x|py, ). “
Z k=1

- If we have several observations Xy,...,Xy, it follows that

for every observed data point x,,, there is a corresponding

latent variable z,.. <

* Let us look at the conditional p(z|x), responsibilities, which
we will need for doing inference:

p(zr = 1)p(x|zr, = 1)

v(zk) = plae = 1|x) = —% =
4 Zj:1 p(z; = Dp(x|z; = 1)
responsibility that - T NV (X| g, Xige)

component k takes for R K _ N
explaining the datum x Zj:l WJN(X“LJ" 23)

« We will view 1, as prior probability that z, =1, and y(z,) is the
corresponding posterior once we have observed the data.



Example

* 500 points drawn from a mixture of three normal distributions

0.5

0 L
0 0.5 1 0 05 1 0 0.5 1
Samples from the joint  Samples from the Same samples where
distribution p(x,z). marginal distribution p(x). colours represent the

value of responsibilities.



Maximum Likelihood

 Recall from lecture 4 (slide 27). Suppose we observe a dataset {X,,...,Xy},
and we model the data using a mixture of Gaussians.

» We represent the dataset as an N by D matrix X.

» The corresponding latent variables will be represented and an N by K
matrix Z.

an =N
* The log-likelihood takes the form: T o—
N K
Inp(X|m, pu, ) = len;mN(ka,Ek). .
! u —s
Model parameters . L

Graphical model for a Gaussian mixture

« How might we maximize this? model for a set of i.i.d. data point {x,,}, and
corresponding latent variables {z}.



Maximum Likelihood

* The log-likelihood:

lﬂp(X"ﬂ',ﬂ,, y‘lnyﬂ-k-j\f X|u’k92k)
n=1

- Differentiating with respect to y, and setting to zero:

TN (Xn |y, B) 1
> el CTS R —
ZZWJ X’ﬂ“‘l’jazj K
J
N
Y(znk) Soft assignment

~ z
by, = Nik D (Eak)%n, Ni =) 7(zar).

\.

N

v

« We can interpret N, as effective number of points assigned to cluster k.

- The mean y, is given by the mean of all the data points weighted by the
posterior y(z,,) that component k was responsible for generating Xx,,.



Maximum Likelihood

* The log-likelihood:

N K
Inp(X|mw, 1, X) = y: lny: TN (X[, Xk ).
k=1

n=1

- Differentiating with respect to 2, and setting to zero:

N
1
2k = N, Z Y (Znk) (X5 — ) (K — )" T
n=1

 Note that the data points are weighted by the X,
posterior probabilities. 0

« Maximizing log-likelihood with respect to mixing

proportions: N

Tk
N
 Mixing proportion for the ki component is given by the average
responsibility which that component takes for explaining the data.



Maximum Likelihood

* The log-likelihood:

N K
Inp(X|mw, 1, X) = y: lny: TN (X[, Xk ).
k=1

n=1

« Note that the maximum likelihood does not have a closed form solution.

« Parameter updates depend on responsibilities

v(z.,), which themselves depend on those T e—
parameters:
TN (Xp |, 235
(k) = Pl = 1) = N b )
23:1 WjN(Xn“l'j» %) 1L

- Iterative Solution:

E-step: Update responsibilities y(z,,).

M-step: Update model parameters m,, W, 2,, for k=1,...,

Zy

"\

K.



Recall: K-Means Clustering (ecture 11)

* Let us first look at the following problem: Identify clusters, or groups, of
data points in a multidimensional space.

* We observe the dataset {x;,...,xy} consisting of N D-dimensional
observations

« We would like to partition the data into K clusters, where K is given.
* We next introduce D-dimensional vectors, prototypes, u,,k=1,..., K.

« We can think of p, as representing cluster centers.

« Our goal: 2 (@)
- Find an assignment of data points to clusters. X
- Sum of squared distances of each data 0 gt e
point to its closest prototype is at the o
minimum. y 3
-2




Recall: K-Means Clustering (ecture 11)

 For each data point x,, we introduce a binary vector r, of length K (1-of-K
encoding), which indicates which of the K clusters the data point x,, is
assigned to.

 Define objective (distortion measure):

N K
J = ernkan - Nk:“z-

n=1 k=1
* It represents the sum of squares of the distances of each data point to its
assigned prototype H,.

21 (a)

 Our goal it find the values of r,, and the X
cluster centres p, so as to minimize the
objective J.




Recall: Iterative Algorithm ecture 11)

 Define iterative procedure to minimize:

N K
J = er’”nkan - Nk||2-

n=1 k=1 )
Hard assignments of

« Given p,, minimize J with respect to r,,, (E-step): points to clusters.

—

[ 1 ifk =argmin; ||x, — p;]|*
""E =0 otherwise

which simply says assign n'" data point x,, to its closest cluster centre.

- Given r,,, minimize J with respect to y, (M-step):

Hy, = 2 "k X Number of points
k e .
Zn Tnk € P

assigned to cluster k.

Set y, equal to the mean of all the data points assigned to cluster k.

« Guaranteed convergence to local minimum (not global minimum).



Reca”: Example (lecture 11)

« Example of using K-means (K=2) on Old Faithful dataset.




M iXture Of GaUSSianS (quickly mentioned in lecture 11)

« lllustration of the EM algorithm (much slower convergence
compared to K-means)

2t

=2t =2t
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Summary of the EM algorithm for GMMs

* Initialize the means p,, covariances 2,, and mixing proportions ..
 E-step: Evaluate responsibilities using current parameter values:

T N (X | g5 2 )
e :
Zj:l ﬂ—jN(Xn“"’ja EJ)
« M-step: Re-estimate model parameters using the current responsibilities:

1
ppt = Fk: Z'Y(an)xna N = Z'Y(an)a
T n

Y(2nk) = p(2nk = 1|x) =

N
new ]'
2 = N, Z V(Ynk ) (Xn — pg) (Xn — Mk)Ta
n=1

 Evaluate the log-likelihood and check for convergence.



An Alternative View of EM

* The goal of EM is to find maximum likelihood solutions for models with
latent variables.

» We represent the observed dataset as an N by D matrix X.
» Latent variables will be represented as an N by K matrix Z.

» The set of all model parameters is denoted by u.

» The log-likelihood takes the form:

an =
Inp(Xl]6) =1In [Zp(X,Z\Q)} e
Z
* Note: even if the joint distribution belongs to Xy,
exponential family, the marginal typically does not! — 3
- We will call: s L

{X,Z} as complete dataset.
{X} asincomplete dataset.



An Alternative View of EM

* In practice, we are not given a complete dataset {X,Z}, but only
Incomplete dataset {X]}.

» Our knowledge about the latent variables is given only by the posterior
distribution p(Z|X,u).

« Because we cannot use the complete data log-likelihood, we can
consider expected complete-data log-likelihood:

Q(6,6°%) = > " p(Z|X,6°) Inp(X, Z|6).
Z

* In the E-step, we use the current parameters u°'d to compute the
posterior over the latent variables p(Z|X,u°'?).
« We use this posterior to compute expected complete log-likelihood.

* In the M-step, we find the revised parameter estimate u"e" by
maximizing the expected complete log-likelihood:

<« lractable
0" = arg mgx Q(6, QOZd).



The General EM algorithm

 Given a joint distribution p(Z,X|u) over observed and latent variables
governed by parameters u, the goal is to maximize the likelihood function
p(X|u) with respect to pu.

« Initialize parameters u°'d.
« E-step: Compute posterior over latent variables: p(Z|X,u°'9).
« M-step: Find the new estimate of parameters u"ev:

9" = arg max Q(6, 8°%).
where 0

Q(6,6°") = > " p(Z|X,6°) Inp(X, Z|6).
Z

» Check for convergence of either log-likelihood or the parameter values.

Otherwise: _
prev « gold - and iterate.



Gaussian Mixtures Revisited

« We now consider the application of the latent variable view of EM the
case of Gaussian mixture model.

e Recall: N %
lnp(X‘ﬂ-a 22 2) — Z IHZ ﬂ-kN(X“‘Lkv Zk)
k=1

n=1

f <)
Zin Zn

{X} --incomplete dataset. {X,Z} -- complete dataset.



Maximizing Complete Data

« Consider the problem of maximizing the likelihood for the complete
data:

N K Znk
pX.zim %) = [] [T |m i B0)|

n=1 k=1

K _
Inp(X,Z|m, pu, ) = y: [y: Znke M T + Zpg NN (X |y, Xi) |-

k=1 nz\l y -

V f—ﬂ
Sum of K independent
contributions, one for each
mixture component.

« Maximizing with respect to mixing proportions H — X
yields: 1 N . N
n—

. : -- complete dataset.
« And similarly for the means and covariances. P



Posterior Over Latent Variables

« Remember:

p(x|z) = HNXWkaZk : Hﬂ'

k=1
* The posterior over latent variables takes form.

N K Zk
p(Z| X, 7w, p, ) H H {W;{N(ka, Ek)] :
n=1 k=1

 Note that the posterior factorizes over n points,
so that under the posterior distribution {z,} are
iIndependent.




Expected Complete Log-Likelihood

« The expected value of indicator variable z,, under the posterior

distribution is:
Znj
Zzn “nk Hj [ﬂ_jN(Xn‘p’jﬂ 23)}

Elznk| = ——
= S T TN el 3]

TN (Xp |y, 235
= I B ()
23:1 ﬂ_jN(Xn‘ﬂ’ja Ej)

* This represent the responsibility of component k for data point x...

* The complete-data log-likelihood:

N K
Inp(X, Z|mw, pu, ) = Z Zznk {lnmg + In NV (x5 | p Zk)] .
n=1 k=1

* The expected complete data log-likelihood is:

N K
Ez|lnp(X,Z|7, p,X)| = Z Z’}/(an) {lnm + In N (X, |y, Zk)] .
k=1

n=1



Expected Complete Log-Likelihood

« The expected complete data log-likelihood is:

N K
Ez|Inp(X, Z|mw, p, )| = Z Z’V(an) [lnm + In N (x| s, 2k) |-
n=1 k=1

« Maximizing the respect to model parameters we obtain:

new: Z'Y an Xn, Nk—Z’Y an

new __
2. =

Z 3

Z (Ynk) (X — B3) (X — 1) "

erw —

1
N

N

N




Relationship to K-Means

» Consider a Gaussian mixture model in which covariances are shared
and are given by el.

1 1
Pl D) = e | — ok .

« Consider EM algorithm for a mixture of K Gaussians, in which we treat €
as a fixed constant. The posterior responsibilities take form:

oy mwespl(—lx, — /20
n - K .
Zj:l mj exp(—|[xn — Hsz/QE)

« Consider the limit € — O.
- In the denominator, the term for which ||x,, — usz is smallest will go to

zero most slowly. Hence y(z,,) — I, Where

[ 1 ifk=argming |[x, — p,||?
"k =0 0 otherwise



Relationship to K-Means

« Consider EM algorithnm for a mixture of K Gaussians, in which we treat
¢ as a fixed constant. The posterior responsibilities take form:

Tk exp(—|[xn — pgl[?/2€)
T :
Zj:l m; exp(—|[xn — NjHQ/QE)

* Finally, in the limit € — O, the expected complete log-likelihood
becomes:

'Y(an) —

N K
1
Ez|Inp(X,Z|7, p, %) = =3 Z Zrnkan — | |? + const.
n=1k=1

« Hence in the limit, maximizing the expected complete log-likelinood is
equivalent to minimizing the distortion measure J for the K-means
algorithm.



