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Mixture models,

EM algorithm



Outline

• Mixture models: review and background

• Brief intro to graphical model pictures

• The Expectation-Maximization algorithm



Mixture Models

• We have looked briefly at a mixture model called the Gaussian mixture

model (lecture 4, eg slides 24-26)

• To fit these models, the key idea is to use latent variables, which allow 

complicated distributions to be formed from simpler distributions.  

• We will see that mixture models can be interpreted in terms of having 

discrete latent variables (in a directed “graphical model”). 

• Earlier when learning PCA, we looked at continuous latent variables. 



Mixture of Gaussians (introduced in lecture 4)

• We will look at mixture of Gaussians in terms of discrete latent variables. 

• The Gaussian mixture can be written as a linear superposition of 

Gaussians:

• Introduce K-dimensional binary random 

variable z having a 1-of-K representation:

• We will specify the distribution over z in terms 

of mixing coefficients:



Graphical model pictures

• Graphical model = 

Multivariate Statistics + Structure

• Directed edges give causality relationships

• A supervised learning model might be: 



Graphical model pictures for a 

Gaussian Mixture Model



Graphical model pictures for a 

Gaussian Mixture Model



Mixture of Gaussians

• Because z uses 1-of-K encoding, we have:

• We can now specify the conditional distribution:

or

• We have therefore specified the joint distribution:

• And we can derive the marginal distribution over x we saw earlier:

• The marginal distribution over x is given by a Gaussian mixture.



Mixture of Gaussians

• The marginal distribution: 

• If we have several observations x1,…,xN, it follows that 

for every observed data point xn, there is a corresponding 

latent variable zn.   

• Let us look at the conditional p(z|x), responsibilities, which 

we will need for doing inference: 

• We will view πk as prior probability that zk =1, and γ(zk) is the 

corresponding posterior once we have observed the data. 

responsibility that 

component k takes for 

explaining the datum x



Example

• 500 points drawn from a mixture of three normal distributions

Samples from the joint 

distribution p(x,z).

Samples from the 

marginal distribution p(x).

Same samples where 

colours represent the 

value of responsibilities.  



Maximum Likelihood

• Recall from lecture 4 (slide 27). Suppose we observe a dataset {x1,…,xN}, 

and we model the data using a mixture of Gaussians. 

• We represent the dataset as an N by D matrix X. 

• The corresponding latent variables will be represented and an N by K

matrix Z.

• The log-likelihood takes the form:

Graphical model for a Gaussian mixture 

model for a set of i.i.d. data point {xn}, and 

corresponding latent variables {zn}.   

Model parameters

• How might we maximize this?



Maximum Likelihood

• The log-likelihood:

• Differentiating with respect to µk and setting to zero:

• We can interpret Nk as effective number of points assigned to cluster k.  

• The mean µk is given by the mean of all the data points weighted by the 

posterior γ(znk) that component k was responsible for generating xn.   

Soft assignment



Maximum Likelihood

• The log-likelihood:

• Differentiating with respect to Σk and setting to zero:

• Maximizing log-likelihood with respect to mixing 

proportions:

• Note that the data points are weighted by the 

posterior probabilities. 

• Mixing proportion for the kth component is given by the average 

responsibility which that component takes for explaining the data.  



Maximum Likelihood

• The log-likelihood:

• Note that the maximum likelihood does not have a closed form solution. 

• Parameter updates depend on responsibilities 

γ(znk), which themselves depend on those 

parameters: 

• Iterative Solution: 

E-step: Update responsibilities γ(znk). 

M-step: Update model parameters πk, µk, Σk, for k=1,…,K.  



Recall: K-Means Clustering (lecture 11)

• Let us first look at the following problem: Identify clusters, or groups, of 

data points in a multidimensional space. 

• We would like to partition the data into K clusters, where K is given. 

• We observe the dataset                      consisting of N D-dimensional 

observations 

• We next introduce D-dimensional vectors, prototypes, 

• We can think of µk as representing cluster centers. 

• Our goal: 

- Find an assignment of data points to clusters.

- Sum of squared distances of each data 

point to its closest prototype is at the 

minimum. 



Recall: K-Means Clustering (lecture 11)

• For each data point xn we introduce a binary vector rn of length K (1-of-K

encoding), which indicates which of the K clusters the data point xn is 

assigned to.

• Define objective (distortion measure):

• It represents the sum of squares of the distances of each data point to its 

assigned prototype µk. 

• Our goal it find the values of  rnk and the 

cluster centres µk so as to minimize the 

objective J. 



Recall: Iterative Algorithm (lecture 11)

• Define iterative procedure to minimize:

• Given µk, minimize J with respect to rnk (E-step): 

which simply says assign nth data point xn to its closest cluster centre. 

• Given rnk, minimize J with respect to µk (M-step): 

Set µk equal to the mean of all the data points assigned to cluster k. 

Number of points 

assigned to cluster k.

• Guaranteed convergence to local minimum (not global minimum).  

Hard assignments of 

points to clusters.



Recall: Example (lecture 11)

• Example of using K-means (K=2) on Old Faithful dataset.



Mixture of Gaussians (quickly mentioned in lecture 11)

• Illustration of the EM algorithm (much slower convergence 

compared to K-means) 



Summary of the EM algorithm for GMMs

• Initialize the means µk, covariances Σk, and mixing proportions πk. 

• E-step: Evaluate responsibilities using current parameter values: 

• M-step: Re-estimate model parameters using the current responsibilities:

• Evaluate the log-likelihood and check for convergence. 



An Alternative View of EM

• The goal of EM is to find maximum likelihood solutions for models with 

latent variables.  

• We represent the observed dataset as an N by D matrix X. 

• Latent variables will be represented as an N by K matrix Z.

• The set of all model parameters is denoted by µ. 

• The log-likelihood takes the form:

• Note: even if the joint distribution belongs to 

exponential family, the marginal typically does not! 

• We will call:

as complete dataset.

as incomplete dataset.



An Alternative View of EM

• In practice, we are not given a complete dataset {X,Z}, but only 

incomplete dataset {X}.

• Our knowledge about the latent variables is given only by the posterior 

distribution p(Z|X,µ).  

• Because we cannot use the complete data log-likelihood, we can 

consider expected complete-data log-likelihood: 

• In the E-step, we use the current parameters µold to compute the 

posterior over the latent variables p(Z|X,µold).  

• We use this posterior to compute expected complete log-likelihood. 

• In the M-step, we find the revised parameter estimate µnew by 

maximizing the expected complete log-likelihood: 
Tractable



The General EM algorithm

• Given a joint distribution p(Z,X|µ) over observed and latent variables 

governed by parameters µ, the goal is to maximize the likelihood function 

p(X|µ) with respect to µ. 

• E-step: Compute posterior over latent variables: p(Z|X,µold).  

• Initialize parameters µold.

• M-step: Find the new estimate of parameters µnew:  

where

• Check for convergence of either log-likelihood or the parameter values. 

Otherwise:
and iterate.



Gaussian Mixtures Revisited

• We now consider the application of the latent variable view of EM the 

case of Gaussian mixture model. 

• Recall:

-- complete dataset.-- incomplete dataset.



Maximizing Complete Data

• Consider the problem of maximizing the likelihood for the complete 

data:

-- complete dataset.

• Maximizing with respect to mixing proportions 

yields: 

• And similarly for the means and covariances. 

Sum of K independent 

contributions, one for each 

mixture component.



Posterior Over Latent Variables

• Remember:

• The posterior over latent variables takes form:

• Note that the posterior factorizes over n points, 

so that under the posterior distribution {zn} are 

independent. 



Expected Complete Log-Likelihood

• The expected value of indicator variable znk under the posterior 

distribution is:

• This represent the responsibility of component k for data point xn. 

• The expected complete data log-likelihood is: 

• The complete-data log-likelihood: 



Expected Complete Log-Likelihood

• The expected complete data log-likelihood is: 

• Maximizing the respect to model parameters we obtain: 



Relationship to K-Means

• Consider a Gaussian mixture model in which covariances are shared 

and are given by εI. 

• Consider EM algorithm for a mixture of K Gaussians, in which we treat ε

as a fixed constant. The posterior responsibilities take form:

• Consider the limit ε → 0.

• In the denominator, the term for which                      is smallest will go to 

zero most slowly. Hence γ(znk) → rnk, where           



Relationship to K-Means

• Consider EM algorithm for a mixture of K Gaussians, in which we treat 

ε as a fixed constant. The posterior responsibilities take form:

• Finally, in the limit ε → 0, the expected complete log-likelihood 

becomes:

• Hence in the limit, maximizing the expected complete log-likelihood is 

equivalent to minimizing the distortion measure J for the K-means 

algorithm. 


