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This week

• We will explore the Bayesian framework 

further, including Bayesian Linear Regression 

Models

• Examples of additional perspectives:

• Bishop 2006: section 3.3

• Murphy 2012: parts of chap. 5, & sec. 7.6

• On Thursday, midterms will be distributed as 

well



Bayesian Approach

• We formulate our knowledge about the world probabilistically: 

- We define the model that expresses our knowledge qualitatively 

(e.g. independence assumptions, forms of distributions).  

• We observe the data.

• We compute the posterior probability distribution for the 

parameters, given observed data. 

• We use this posterior distribution to:

- Make predictions by averaging over the posterior distribution

- Examine/Account for uncertainty in the parameter values. 

- Make decisions by minimizing expected posterior loss. 

(Bonus: Radford Neal’s NIPS tutorial on “Bayesian Methods for Machine Learning”) 

- Our model will have some unknown parameters.

- We capture our assumptions, or prior beliefs, about unknown 

parameters (e.g. range of plausible values) by specifying the prior 

distribution over those parameters before seeing the data.

ftp://www.cs.toronto.edu/pub/radford/bayes-tut.pdf


Posterior Distribution
• The posterior distribution for the model parameters can be found by 

combining the prior with the likelihood for the parameters given the data. 

• This is accomplished using Bayes’ Rule:

Marginal likelihood 

(normalizing constant):

This integral can be high-dimensional and is 

often difficult to compute. 

Posterior probability 

of weight vector W 

given training data D

Probability of 

observed data 

given w

Prior probability of 

weight vector w



The Rules of Probability

Sum Rule:

Product Rule:



Predictive Distribution

• We can also state Bayes’ rule in words:

which is sometimes called the predictive distribution. 

• Note that computing the predictive distribution requires knowledge of 

the posterior distribution:

where 

which is usually intractable. 

• We can make predictions for a new data point x*, given the training 

dataset by integrating over the posterior distribution: 



Modelling Challenges
• The first challenge is in specifying suitable model and suitable prior 

distributions. This can be challenging particularly when dealing with 

high-dimensional problems we see in machine learning. 

• We may need to properly model dependencies among parameters in 

order to avoid having a prior that is too spread out. 

- A suitable model should admit all the possibilities that are 

thought to be at all likely.

- A suitable prior should avoid giving zero or very small 

probabilities to possible events, but should also avoid spreading 

out the probability over all possibilities.  

• One strategy is to introduce latent variables into the model and 

hyperparameters into the prior. 

• Both of these represent the ways of modelling dependencies in a 

tractable way. 



Computational Challenges

The other big challenge is computing the posterior distribution. There 

are several main approaches: 

• Analytical integration: If we use “conjugate” priors, the posterior 

distribution can be computed analytically. Chiefly employed for simple 

models

• Gaussian (Laplace) approximation: Approximate the posterior 

distribution with a Gaussian. Works well when there is a lot of data 

compared to the model complexity (as posterior is close to Gaussian). 

• Monte Carlo integration: Once we have a sample from the posterior 

distribution, we can do many things. The dominant current approach is 

Markov Chain Monte Carlo (MCMC): simulate a Markov chain that 

converges to the posterior distribution. It can be applied to a wide variety 

of problems. 

• Variational approximation: A cleverer way to approximate the 

posterior. It often works much faster compared to MCMC. But often not 

as general as MCMC. 

(We aren’t 

covering the 

last three 

here)



Our linear regression techniques

• LLS LR = MLE LR:  

• MAP LR:

– l2 regularization combats overfitting

– l1 regularization does so with sparser solutions

• Bayesian LR:

– Combats overfitting while allowing more data to be used 

for training

– N.B.: something called “Empirical-Bayes LR” (not covered 

here) reduces the assumptions we make about the prior



Bayesian Linear Regression
• Given observed inputs                                    and corresponding target 

values                                we can write down the likelihood function:

where                                                           represent our basis functions.           

• The corresponding conjugate prior is given by a Gaussian 

distribution:

• As both the likelihood and the prior terms are Gaussians, the 

posterior distribution will also be Gaussian. 

• If the posterior distributions p(θ|x) are in the same family as the prior 

probability distribution p(θ), the prior and posterior are then called conjugate 

distributions, and the prior is called a conjugate prior for the likelihood. 



Pause: why is the normal distribution’s 

conjugate prior another normal?



Examples of conjugate priors

• Binomial:                                β prior

• Multinomial:                 Dirichlet prior

• Exponential, Poisson, or γ:     γ prior

• Normal:                         Normal prior

• Uniform:                         Pareto prior

Bonus



Back to Bayesian Linear Regression
• Combining the prior together with the likelihood term:

• The posterior (with a bit of manipulation) takes the following 

Gaussian form:

where           

• The posterior mean can be expressed in terms of the least-squares 

estimator and the prior mean: 

• As we increase our prior precision (decrease prior variance), we place 

greater weight on the prior mean relative to the data. 



Bayesian Linear Regression
• Consider a zero-mean, isotropic, Gaussian prior which is governed 

by a single precision parameter α:

• If we consider an infinitely broad prior, α → 0, the mean mN of the posterior 

distribution reduces to maximum likelihood value wML. (Can you see how?)

for which the posterior is Gaussian with:

• The log of the posterior distribution is given by the sum of the log-

likelihood and the log of the prior: 

• Maximizing this posterior with respect to w is equivalent to minimizing the 

sum-of-squares error function with a quadratic regulation term λ = α / β. 



Bayesian Linear Regression

• Consider a linear model of the form: 

• The training data is generated from the function                                   

with a0 = -0.3 and a1 = 0.5 by first choosing xn uniformly from [-1;1], 

evaluating             and adding a small Gaussian noise.

• Goal: recover the values of            from such data.

When zero data points have been observed: 
Prior Data Space



Bayesian Linear Regression

Prior Data Space0 data points are observed: 

1 data point is observed: 

Likelihood Posterior Data Space



Bayesian Linear Regression

0 data points are observed. 

1 data point is observed. 

2 data points are observed. 

20 data points are observed. 



Predictive Distribution

• We can make predictions for a new input vector x by integrating over 

the posterior distribution: 

where 

• As N → ∞:
• The second term goes to zero

• The variance of the predictive distribution arises only from the 

additive noise governed by parameter β

Noise in the 

target values
Uncertainty 

associated with 

parameter values.



Predictive Distribution: ML vs. Bayes 

Bayesian predictive distribution
Predictive distribution based on 

maximum likelihood estimates



Predictive Distribution
Sinusoidal dataset, nine Gaussian basis functions. 

Predictive distribution Samples from the posterior



Predictive Distribution
Sinusoidal dataset, nine Gaussian basis functions. 

Predictive distribution Samples from the posterior



Bayesian Model Comparison
• The Bayesian view of model comparison involves the use of 

probabilities to represent uncertainty in the choice of the model.

• We specify the prior distribution over the different models 

• Given a training set D, we evaluate the posterior: 

Posterior Prior Model evidence or 
marginal likelihood

• The model evidence expresses the preference shown by the data for 

different models. 

• The ratio of two model evidences for two 

models is known as a Bayes factor:

• For simplicity, we will assume that all models are a-priori equally likely

• We would like to compare a set of L models             where 

using a training set D.   



Bayesian Model Comparison

• Once we compute the posterior                 we can compute the 

predictive (mixture) distribution:

• A simpler approximation, known as model selection, is to use the model 

with the highest evidence.

• The overall predictive distribution is obtained by averaging the predictive 

distributions of individual models, weighted by the posterior probabilities.

• For example, if we have two models, 

and one predicts a narrow distribution 

around t=a while the other predicts a 

narrow distribution around t=b, then the 

overall predictions will be bimodal: 



Bayesian Model Comparison

• Remember, the posterior is given by   

For a model governed by a set of parameters w, the model evidence can 

be computed as follows:

• The model evidence is also often called marginal likelihood. 

• Observe that the evidence is the normalizing term that appears in the 

denominator in Bayes’ rule: 



Bayesian Model Comparison

• We next get some insight into the model evidence by making simple 

approximations. 

• For a given model with a single parameter, w, 

consider approximations:

- Assume that the prior is flat 

with width

- Assume that the posterior is peaked 

around the most probable value              

with width



Bayesian Model Comparison
• Taking the logarithms, we obtain:

Negative

• With M parameters, all assumed to have the same 

ratio:

Negative and linear in M.

• As we increase the complexity of the model (increase the number of 

adaptive parameters M), the first term will increase, whereas the second 

term will decrease due to the dependence on M. 

• The optimal model complexity: trade-off between these two competing 

terms. 



Bayesian Model Comparison

• The simple model cannot fit the data well, whereas the more complex 

model spreads its predictive probability and so assigns relatively small 

probability to any one of them.  

Matching data and 

model complexity
• For the particular observed 

dataset        the model         with 

intermediate complexity has the 

largest evidence.  

• The marginal likelihood is very sensitive to the prior used!  

• Computing the marginal likelihood makes sense only if you are certain 

about the choice of the prior. 



Hint for the question on slide 11

The exponent in the right-hand side is:

Compare this, term by term, to a single Gaussian’s exponent:
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And you arrive at the terms on the left-hand side of slide 12.


