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PCA continued,
Bayesian methods

With thanks to Russ Salakhutdinov and others



This week

« We will explore the Bayesian framework
further, including Bayesian Linear Regression
Models

« Examples of additional perspectives:
 Bishop 2006: section 3.3
» Murphy 2012: parts of chap. 5, & sec. 7.6

* On Thursday, midterms will be distributed as
well



Bayesian Approach

» We formulate our knowledge about the world probabilistically:
- We define the model that expresses our knowledge qualitatively
(e.g. independence assumptions, forms of distributions).
- Our model will have some unknown parameters.

- We capture our assumptions, or prior beliefs, about unknown
parameters (e.g. range of plausible values) by specifying the prior
distribution over those parameters before seeing the data.

« We observe the data.

« We compute the posterior probability distribution for the
parameters, given observed data.

» \WWe use this posterior distribution to:

- Make predictions by averaging over the posterior distribution
- Examine/Account for uncertainty in the parameter values.
- Make decisions by minimizing expected posterior loss.

(Bonus: Radford Neal's NIPS tutorial on “Bayesian Methods for Machine Learning”)



ftp://www.cs.toronto.edu/pub/radford/bayes-tut.pdf

Posterior Distribution

» The posterior distribution for the model parameters can be found by
combining the prior with the likelihood for the parameters given the data.

 This is accomplished using Bayes’ Rule:

P(data | parameters) P (parameters)

P(parameters | data) =

P(data)
Probability of Prior probability of
observed data \ / weight vector w
given w
p(w(D) — PPIWIP(w)
- P(D)
Marginal likelihood
Posterior probability (normalizing constant):

of weight vector W

given training data D P(D) = /p(D\W)P(W)dw

This integral can be high-dimensional and is
often difficult to compute.



The Rules of Probability

Sum Rule: p(X)=> p(X)Y)

Product Rule:




Predictive Distribution

« We can also state Bayes'’ rule in words:

posterior o likelithood X prior.

« We can make predictions for a new data point x°, given the training
dataset by integrating over the posterior distribution:

p(X*‘D) — fp(X*|W9 D)p(W|D)dW — II:—":"I:’(\rvﬂ)) [p(X*‘Wﬂ D)L

which is sometimes called the predictive distribution.

 Note that computing the predictive distribution requires knowledge of
the posterior distribution:

p(Dlw)P(w)

p(w|D) = P(D)

, Wwhere P(D) = /p(D\W)P(w)dw

which is usually intractable.



Modelling Challenges

 The first challenge is in specifying suitable model and suitable prior
distributions. This can be challenging particularly when dealing with
high-dimensional problems we see in machine learning.

- A suitable model should admit all the possibilities that are
thought to be at all likely.

- A suitable prior should avoid giving zero or very small
probabilities to possible events, but should also avoid spreading
out the probability over all possibilities.

« We may need to properly model dependencies among parameters in
order to avoid having a prior that is too spread out.

» One strategy is to introduce latent variables into the model and
hyperparameters into the prior.

 Both of these represent the ways of modelling dependencies in a
tractable way.



Computational Challenges

The other big challenge is computing the posterior distribution. There
are several main approaches:

« Analytical integration: If we use “conjugate” priors, the posterior
distribution can be computed analytically. Chiefly employed for simple
models

(We aren’t

« Gaussian (Laplace) approximation: Approximate the posterior covering the
distribution with a Gaussian. Works well when there is a lot of data "¢
compared to the model complexity (as posterior is close to Gaussian).

« Monte Carlo integration: Once we have a sample from the posterior
distribution, we can do many things. The dominant current approach is
Markov Chain Monte Carlo (MCMC): simulate a Markov chain that
converges to the posterior distribution. It can be applied to a wide variety
of problems.

» Variational approximation: A cleverer way to approximate the
posterior. It often works much faster compared to MCMC. But often not
as general as MCMC.



Our linear regression techniques

* LLSLR =MLE LR: w—argmax, p(D|w)
e MAP LR: w — argmax,, p{w|D)
— L, regularization combats overfitting
— A, regularization does so with sparser solutions

« Bayesian LR: p(w|D)
— Combats overfitting while allowing more data to be used
for training

— N.B.: something called “Empirical-Bayes LR" (not covered
here) reduces the assumptions we make about the prior



Bayesian Linear Regression

» Given observed inputs X = {x;,x2,...,Xx}, and corresponding target
values t = [t1,t.,....tx]" , We can write down the likelihood function:

N
p(tX,w,8) = | [ N(talw" ¢ (xn), 871),
n=1

where ¢(x) = (¢o(x), ¢1(%), ..., dar—1(x))" represent our basis functions.

» The corresponding conjugate prior is given by a Gaussian
distribution:

p(w) = N(w|myg, So).

* As both the likelihood and the prior terms are Gaussians, the
posterior distribution will also be Gaussian.

« If the posterior distributions p(8|x) are in the same family as the prior
probability distribution p(0), the prior and posterior are then called conjugate
distributions, and the prior is called a conjugate prior for the likelihood.



Pause: why is the normal distribution’s
conjugate prior another normal?

p(p|X) o< p(X|p)p(pe)

]

p(p|X) =N (ulpn, o) p(p) = N (| o, 05)
o o’ N r:rﬂ
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Examples of conjugate priors

Binomial:
Multinomial:

B prior

Dirichlet

Exponential, Poisson, ory. vy

Normal:
Uniform:

Normal
Pareto

Orior
Orior
Orior

Orior

Bonus



Back to Bayesian Linear Regression

« Combining the prior together with the likelihood term:
p(w|t, X, w, ) [HN to|wl @(xn), B )]N(W\mg,Sg).

» The posterior (with a bit of manipulation) takes the following
Gaussian form:

p(w[t) = N(w|my,Sy)
where

my = Sy (Salmo + ﬁ‘I)Tt)

Sy’ = Sgl+p69d.

* The posterior mean can be expressed in terms of the least-squares
estimator and the prior mean:

mpy = Sy (551m0 + 5<I>T<I>WML>. wyr = (8" @) 'e't.

« AS we increase our prior precision (decrease prior variance), we place
greater weight on the prior mean relative to the data.



Bayesian Linear Regression

« Consider a zero-mean, isotropic, Gaussian prior which is governed
by a single precision parameter a:

p(w) = N(wl|0,a 1)
for which the posterior is Gaussian with:
my = [SyP't
Sy, = ol+p3®'d

* If we consider an infinitely broad prior, a — 0, the mean m, of the posterior
distribution reduces to maximum likelihood value w,,, . (Can you see how?)

wyr = (8" @) 'e't.

» The log of the posterior distribution is given by the sum of the log-
likelihood and the log of the prior:

Inp(w|D) = Z b — W qun)) ——w W + const.

« Maximizing this posterior Wlth respect to w is equivalent to minimizing the

sum-of-squares error function with a quadratic regulationterm A =a/ (.




Bayesian Linear Regression

« Consider a linear model of the form: y(z,w) = wo + w1 .

- The training data is generated from the function f(z,a) = ao + a1
with a; = -0.3 and a; = 0.5 by first choosing x,, uniformly from [-1;1],
evaluating f(z,a), and adding a small Gaussian noise.

» Goal: recover the values of ag, a1 from such data.

When zero data points have been observed:
Prior | Data Space




Bayesian Linear Regression

0 data points are observed: Prior Data Space
of -» 0
. 1
<1 0 o | -1 0 z 1
1 data point is observed:
Likelihood Data Space
Yy
0
-1
-1 0 =« 1




Bayesian Linear Regression

likelihood prior/posterior data space
1 1

w1 Y

O data points are observed.
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S O




Predictive Distribution

» We can make predictions for a new input vector x by integrating over
the posterior distribution:

p(t]t, %, X, a, ) = ] p(t]x, w, B)p(wlt, X, a, B)dw
— N (tmEd(x), 02 (x)),

where
1 T
0% (%) = = + (%) "SnP(x). my = GSnet
/6 \ SJ_\I1 = al+p32'®.
Noise in the Uncertainty
target values associated with
parameter values.

* AS N — oo:

* The second term goes to zero
* The variance of the predictive distribution arises only from the
additive noise governed by parameter 8



Predictive Distribution: ML vs. Bayes

Predictive distribution based on _ o -
maximum likelihood estimates Bayesian predictive distribution

177N N7

/ O 7 \ (o)
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p(tlz, war, Bur) = N (tly(z, wun), Byr) — p(t|z, t, X) = N (¢{myé(x), 0% (z))



Predictive Distribution

Sinusoidal dataset, nine Gaussian basis functions.

Predictive distribution Samples from the posterior

t t
Of - 1 of
-1t { -1t
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Predictive Distribution

Sinusoidal dataset, nine Gaussian basis functions.

Predictive distribution  Samples from the posterior




Bayesian Model Comparison

» The Bayesian view of model comparison involves the use of
probabilities to represent uncertainty in the choice of the model.

« We would like to compare a set of L models {M;}, where i = 1,2, ..., L,
using a training set .

« We specify the prior distribution over the different models p(M;).

 Given a training set D, we evaluate the posterior:

p(M;|D) o< p(M;)p(D|M;).

Posterior Prior Model evidence or
marginal likelihood

 For simplicity, we will assume that all models are a-priori equally likely

» The model evidence expresses the preference shown by the data for
different models.

+ The ratio of two model evidences for two ~ P(D| M)
models is known as a Bayes factor: p(D|M;)




Bayesian Model Comparison

« Once we compute the posterior p(M;|D), we can compute the
predictive (mixture) distribution:

L
i=1

» The overall predictive distribution is obtained by averaging the predictive

distributions of individual models, weighted by the posterior probabilities.

* For example, if we have two models,
and one predicts a narrow distribution
around t=a while the other predicts a
narrow distribution around t=b, then the
overall predictions will be bimodal: t=a t=1»

» A simpler approximation, known as model selection, is to use the model
with the highest evidence.



Bayesian Model Comparison

« Remember, the posterior is given by
p(M;|D) o< p(M;)p(DIM;).

For a model governed by a set of parameters w, the model evidence can
be computed as follows:

p(D‘TMi) = /p(D\w,./\/li)p(w|M¢)dw.

» Observe that the evidence is the normalizing term that appears in the
denominator in Bayes'’ rule:

p(W‘D,M@) —

p(Dlw, M;)p(w|M;)
p(D\Mi)

T

» The model evidence is also often called marginal likelihood.




Bayesian Model Comparison

» We next get some insight into the model evidence by making simple

approximations.

 For a given model with a single parameter, w,

consider approximations:

- Assume that the posterior is peaked

around the most probable value Wy ap,

with width Aw

posterior

- Assume that the prior is flat
with width Awprior

AprSteI'iOI‘
4P

/[

p(D) = / p(Dlw)p(w) duw

Awpostelrior

Aprrior

~ p(Dlwmap)




Bayesian Model Comparison

 Taking the logarithms, we obtain:

A osterior
Inp(D) ~ In p(D|wmap) + In ( Cpost ) :
Awprior
L
Y
Negative

* With M parameters, all assumed to have the same Awpesterior/ AWprior
ratio:

Inp(D) ~ Inp(D|wyap) + M In (

Negative and linear in M.

» As we increase the complexity of the model (increase the number of
adaptive parameters M), the first term will increase, whereas the second
term will decrease due to the dependence on M.

» The optimal model complexity: trade-off between these two competing
terms.



Bayesian Model Comparison

p(D) Matching data and

M . * For the particular observed
! model complexity

dataset Dy, the model M, with
Intermediate complexity has the
largest evidence.

Mo

_ _
S

>

Do D

* The simple model cannot fit the data well, whereas the more complex
model spreads its predictive probability and so assigns relatively small
probability to any one of them.

» The marginal likelihood is very sensitive to the prior used!

« Computing the marginal likelihood makes sense only if you are certain
about the choice of the prior.



Hint for the question on slide 11

The exponent in the right-hand side is:

1 . 1 _
— =y — o)* — 252 Z(lfn — )’
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Compare this, term by term, to a single Gaussian’s exponent:

_ l(“‘“N)Z: _ ”_z(i)z + U (“—N) + const.

2 ON 2 \opn O'N2

And you arrive at the terms on the left-hand side of slide 12.



