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Preface to K-means Clustering

• Recall the unknown mixing coefficients in Gaussian mixture models. 

• These coefficients are an example of latent variables, which allow 

complicated distributions to be formed from simpler distributions.  

• In general, ‘mixture models’ can be interpreted in terms of having 

discrete latent variables 

• Later, we will also look at continuous latent variables. 



K-Means Clustering

• Consider the following problem: Identify clusters, or groups, of data 

points in a multidimensional space. 

• We would like to partition the data into K clusters, where K is given

• We observe the dataset                      consisting of N observations, each 

of D dimensions

• We next introduce D-dimensional vectors, prototypes

• We can think of µk as representing cluster centres

• Our goal: 

- Find an assignment of data points to clusters

- Sum of squared distances of each data 

point to its closest prototype is to be 

minimized



K-Means Clustering

• For each data point xn we introduce a binary vector rn of length K 

(1-of-K encoding), which indicates which of the K clusters the data point

xn is assigned to.

• Define an objective function (distortion measure):

• It represents the sum of squares of the distances of each data point to its 

assigned prototype µk. 

• Our goal is to find the values of rnk and the 

cluster centres µk so as to minimize the 

objective function J. 



Iterative Algorithm

• Define an iterative procedure to minimize:

• Given µk, minimize J with respect to rnk (akin to the E-step in EM): 

which simply says assign the nth data point xn to its closest cluster centre 

• Given rnk, minimize J with respect to µk (akin to the M-step): 

Set µk equal to the mean of all the data points assigned to cluster k

Number of points 

assigned to cluster k.

• Guaranteed convergence to a local minimum (not global minimum)  

Hard assignments of 

points to clusters



Example

• Example of using K-means (K=2) on the Old Faithful dataset.



Convergence 

• Plot of the cost function after each E-step (blue points) and M-step (red 

points)

The algorithm has converged 

after three iterations. 

• K-means can be generalized by introducing a more general dissimilarity 

measure:



Image Segmentation

• Another application of the K-means algorithm. 

• Partition an image into regions corresponding, for example, to object parts. 

• Each pixel in an image is a point in 3-D space, corresponding to R,G,B 

channels.

• For a given value of K, the algorithm represents an image using K colours. 

• Another application is image compression.



Image Compression

• For each data point, we store only the identity k of the assigned cluster. 

• We also store the values of the cluster centers µk. 

• Provided K << N, we require significantly less data. 

• Requires 43,200 x 24 = 1,036,800 bits to transmit directly.  

• With K-means, we need to transmit K code-book vectors µk -- 24K bits. 

• The original image 

has 240 x 180 = 

43,200 pixels. 

• Each pixel contains 

{R,G,B} values, each of 

which requires 8 bits. 

• For each pixel we need to transmit log2K bits (as there are K vectors). 

• Compressed image requires 43,248 (K=2), 86,472 (K=3), and 173,040 (K=10) 

bits, which amounts to compression ratios of 4.2%, 8.3%, and 16.7%.

Original image K=3 K=10



Extension: the real EM Algorithm
• Much slower convergence compared to K-means
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Continuous Latent Variable Models

•

• Motivation: for many datasets, data points lie close to a manifold of 

much lower dimensionality compared to that of the original data space. 

• Training continuous latent variable models is often called dimensionality 

reduction, since there are typically fewer latent dimensions.

• So far we have looked at models with discrete latent variables, such as 

the mixture of Gaussians. 

• Often there are some unknown underlying causes of the data.

• Sometimes, it is more appropriate to think in terms of continuous

factors which control the data we observe. 

• Examples: Principal Component Analysis, Factor Analysis, Independent 

Component Analysis



Intrinsic Latent Dimensions

•• What are the intrinsic latent dimensions in these two datasets?

• How can we find the latent dimensions from this high-dimensional data? 



Intrinsic Latent Dimensions

•• In this dataset, there are only 3 degrees of freedom of variability, 

corresponding to vertical- and horizontal translations, and the rotations. 

• Each image undergoes a random displacement and rotation within 

some larger image field. 

• The resulting images have 100 x 100 = 10,000 pixels. 



Autoencoders
• Neural networks can be used for nonlinear dimensionality reduction. 

• This is achieved by having the same number of outputs as inputs. These 

models are called autoencoders, or autoassociative networks

• Consider a multilayer perceptron that has D inputs, D outputs, and M hidden 

units such that M < D.

• It is useful if we can squeeze the 

information through some kind of bottleneck. 

- If we use a linear network this is very similar 

to Principal Component Analysis.



Autoencoders and PCA
• Given an input x, its corresponding reconstruction is given by:

• We can determine the network parameters 

w by minimizing the reconstruction error: 

• If the hidden and output layers are linear, 

we will learn hidden units that are a linear 

function of the data and minimize the 

squared error.

• The M hidden units will span the same space as the first m principal 

components. The weight vectors may not be orthogonal. 



Deep Autoencoders
• We can put extra nonlinear hidden layers between the input and the bottleneck 

and between the bottleneck and the output.

• This gives a nonlinear generalization 

of PCA.

• Much harder to train.

• The network can be trained by the 

minimization of the reconstruction 

error function. 



Geometrical Interpretation
• Geometrical interpretation of the mappings performed by the network with

2 hidden layers, for the case of D=3 and M=2 units in the middle layer 

• The mapping F1 defines a nonlinear projection of points in the original D-space 

into the M-dimensional subspace

• The mapping F2 maps from an M-dimensional space into D-dimensional space 



Deep Autoencoders
• We can consider very deep autoencoders.

Learning Deep Autoencoders
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Learning Deep Generative Models – 7

• There is an efficient way to learn these deep 

autoencoders

• By row: Real data, Deep autoencoder with a 

bottleneck of 30 linear units, and 30-d PCA. 



Deep Autoencoders
• We can consider very deep autoencoders.

• Similar model for MNIST handwritten digits:

Real data

30-d deep autoencoder

30-d logistic PCA

30-d PCA

• The Deep autoencoder produces much better reconstructions. 



Class Structure of the Data
• Do the 30-D codes found by the deep autoencoder preserve the class 

structure of the data?

• Take the 30-D activity patterns in the code layer and display them in 2-D 

using a form of non-linear multi-dimensional scaling

• Will the learning find the natural classes? 



Class Structure of the Data
• Do the 30-D codes found by the deep autoencoder preserve the class 

structure of the data?
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Recall: Intrinsic Latent Dimensions

•• In this dataset, there are only 3 degrees of freedom of variability, 

corresponding to vertical- and horizontal translations, and the rotations. 

• Each image undergoes a random displacement and rotation within 

some larger image field. 

• The resulting images have 100 x 100 = 10,000 pixels. 



Generative View

•• Each data example was generated by first selecting a point from a 

distribution in the latent space, then generating a point from the 

conditional distribution in the input space

• This leads to a probabilistic formulation of Principal Component 

Analysis and Factor Analysis. 

• We will look at standard PCA, and note its extensions

• Simplest latent variable models: Assume a Gaussian distribution for 

both the latent and observed variables.

• Advantages of probabilistic formulations: use of EM for parameter 

estimation, mixture of PCAs, Bayesian PCA. 



Principal Component Analysis
•• Used for data compression, visualization, feature extraction, dimensionality 

reduction.

• The goal is find M principal components 

underlying the D-dimensional data

- select the top M eigenvectors of S (data 

covariance matrix):

- project each input vector xn into this subspace, 

e.g.  

• Full projection into M dimensions 

takes the form:
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Standard PCA

• Used for data compression, visualization, feature extraction, 

dimensionality reduction

• Algorithm: to find M components underlying D-dimensional data 

– select the top M eigenvectors of S (data covariance matrix):

– project each input vector x into this subspace, e.g.,

• Full projection onto M dimensions:

• Two views/derivations:

– Maximize variance (scatter of green points)

– Minimize error (red-green distance per datapoint)

z = u x

• Two views/derivations:

- Maximize variance (scatter of green 

points).

- Minimize error (red-green distance 

per data point).



• Define the direction of this space using a                    

D-dimensional unit vector u1, so that     

Maximum Variance Formulation
• Consider a dataset {x1,…,xN}, xn ε RD. Our goal is to project data onto a 

space having dimensionality M < D. 

• Consider the projection into M=1 dimensional space. 

• Objective: maximize the variance of the projected 

data with respect to u1. 

where sample mean and data covariance is given by: 



Maximum Variance Formulation
•• Maximize the variance of the projected data:

• Must constrain ||u1|| = 1. Using a Langrage 

multiplier, maximize:

• Setting the derivative with respect to u1 to zero:

• Hence u1 must be an eigenvector of S. 

• The maximum variance of the projected data is given by:

• Optimal u1 is the principal component (eigenvector with maximal eigenvalue).



Minimum Error Formulation
• Introduce a complete orthonormal set of D-dimensional basis vectors:

• Without loss of generality, we can write:

Rotation of the coordinate system to a 

new system defined by ui. 

• Our goal is to represent data points by the projection into an M-dimensional 

subspace, plus some distortion  

• Represent the M-dim linear subspace by the first M basis vectors



Minimum Error Formulation
•• Represent M-dim linear subspace by the first M basis vectors:

where zni depend on the particular data point and bi

are constants.  

• Objective: minimize distortion with respect to ui, 

zni, and bi. 
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Standard PCA: Error minimization

• Data points represented by projection onto M-dimensional subspace, 

plus some distortion:

• Objective: minimize distortion w.r.t.  U1 (reconstruction error of xn)

• The objective is minimized when the D-M components are the 

eigenvectors of S with lowest eigenvalues → same result

J = b(x u − x̄ u ) = u Su

znj = xT
nuj

bj = x̄Tuj

x̃ = z u + bu

J = ||x − x̃ ||

• Minimizing with respect to znj, bj:  

• Hence, the objective reduces to:



Minimum Error Formulation
•• Minimize distortion with respect to ui: constraint  minimization problem:

• The objective is minimized when the remaining D – M components are the 

eigenvectors of S with lowest eigenvalues → same result. 

• The general solution is obtained by choosing ui to 

be eigenvectors of the covariance matrix:  

• The distortion is then given by:

• We will later see a generalization: deep autoencoders. 



Applications of PCA
•• Run PCA on 2429 19x19 grayscale images (CBCL database)

• Data compression: We can get good reconstructions with only 3 components. 

• Pre-processing: We can apply a standard classifier to latent representation –

PCA with 3 components obtains 79% accuracy on face/non-face discrimination in 

test data, vs. 77% for a mixture of Gaussians with 84 components. 

• Data visualization: by projecting the data onto the first two principal 

components.  



Learned Basis
•• Run PCA on 2429 19x19 grayscale images (CBCL database)



Eigenvectors for 3’s



Brief intro to Fisher’s LDA
•• Fisher’s LDA, like PCA, can be used for dimensionality reduction.  

• PCA chooses the direction of maximum variance (magenta curve) leading 

to strong class overlap (unsupervised).

• LDA takes into account the class labels (supervised), leading to a 

projection into the green curve.  



PCA for High-Dimensional Data
•• In some applications of PCA, the number of data points is smaller than the 

dimensionality of the data space, i.e. N<D. 

• So far, we have needed to find the eigenvectors of the D x D data 

covariance matrix S, which scales as O(D3). 

• Direct application of PCA will often be computationally infeasible. 

• Solution: Let X be the N x D centred data matrix. The corresponding 

eigenvector equation becomes:   

• Pre-multiply by X: 



PCA for High-Dimensional Data
•• Define vi = Xui, and hence we have:

• This is an eigenvector equation for the N x N matrix

• Computational cost scales as O(N3) rather than O(D3).

• It has the same N – 1 eigenvalues as the original data covariance matrix S 

(which itself has an additional D – N + 1 zero eigenvalues).  

• To determine eigenvectors, we multiply by XT:

• Hence XT vi is an eigenvector of S with eigenvalue λi.

• These eigenvectors may not be normalized. 



Probabilistic PCA

• We briefly mention a 1990s probabilistic extension of PCA

• Advantages of probabilistic PCA (PPCA):

- We can derive an EM algorithm for PCA, which is computationally efficient. 

- PPCA allows us to deal with missing values in the data set.

- We can formulate a mixture of PPCAs in a principled way.

- PPCA forms the basis for Bayesian PCA, in which the dimensionality of 

the principal subspace can be determined from the data.

- The existence of a likelihood function allows direct comparisons with 

other probabilistic density models 

- And more



First five weeks

1. Intro to ML: types of learning, evaluating

models, probability theory, loss functions

2. kNN, optimization, MLE, regularization

3. Linear basis function models, decision

theory, classification

4. Logistic regression, neural networks

5. Neural networks and deep learning


