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K-means clustering,
Dimensionality reduction

With thanks to Ruslan Salakhutdinov for an earlier version of the slides



Overview

« K-means clustering

« Dimensionality reduction
» Autoencoders
« PCA
» Extensions of PCA



Preface to K-means Clustering

» Recall the unknown mixing coefficients in Gaussian mixture models.

» These coefficients are an example of latent variables, which allow
complicated distributions to be formed from simpler distributions.

* In general, ‘mixture models’ can be interpreted in terms of having
discrete latent variables

 Later, we will also look at continuous latent variables.



K-Means Clustering

 Consider the following problem: Identify clusters, or groups, of data
points in a multidimensional space.

- We observe the dataset {x,,...,xy} consisting of N observations, each
of D dimensions

« We would like to partition the data into K clusters, where K is given

« We next introduce D-dimensional vectors, prototypes u,,k=1,..., K.
« We can think of p, as representing cluster centres

 Our goal: 2t (@)
- Find an assignment of data points to clusters X
- Sum of squared distances of each data 0 oF g
point to its closest prototype is to be v
minimized
2




K-Means Clustering

 For each data point x,, we introduce a binary vector r, of length K
(1-of-K encoding), which indicates which of the K clusters the data point
X, Is assigned to.

 Define an objective function (distortion measure):

N K
J = ernkan - Nk:“z-

n=1 k=1
* It represents the sum of squares of the distances of each data point to its
assigned prototype H,.

21 (a)

» Our goal is to find the values of r,, and the X
cluster centres p, so as to minimize the
objective function J.




lterative Algorithm

 Define an iterative procedure to minimize:

N K
J = er’”nkan - Nk||2-

n=1 k=1

 Given [, minimize J with respect to r,, (akin to the E-step in EM):

<+— Hard assignments of

{ 1 if k =argmin; ||x, — HjH2
I'nk —
points to clusters

0 otherwise

which simply says assign the nt" data point x,, to its closest cluster centre

- Given r,,, minimize J with respect to , (akin to the M-step):

Hy, = 2 "k X Number of points
k _— .
Zn Tnk =" P

assigned to cluster k.

Set u, equal to the mean of all the data points assigned to cluster k

» Guaranteed convergence to a local minimum (not global minimum)



Example

« Example of using K-means (K=2) on the Old Faithful dataset.




Convergence

* Plot of the cost function after each E-step (blue points) and M-step (red
points)

Q ' ' — ]  The algorithm has converged
| after three iterations.
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« K-means can be generalized by introducing a more general dissimilarity
measure:

Z rnkK Xn:’l'k)



Image Segmentation

» Another application of the K-means algorithm.

« Partition an image into regions corresponding, for example, to object parts.
« Each pixel in an image is a point in 3-D space, corresponding to R,G,B
channels.

Original image

 For a given value of K, the algorithm represents an image using K colours.

» Another application is image compression.



Image Compression

« For each data point, we store only the identity k of the assigned cluster.
» We also store the values of the cluster centers L,.

» Provided K << N, we require significantly less data.

| Original image K=3 K=10
’ W " | « The original image
has 240 x 180 =
43,200 pixels.

» Each pixel contains
{R,G,B} values, each of
which requires 8 bits.

* Requires 43,200 x 24 = 1,036,800 bits to transmit directly.
« With K-means, we need to transmit K code-book vectors , -- 24K bits.

« For each pixel we need to transmit log,K bits (as there are K vectors).
« Compressed image requires 43,248 (K=2), 86,472 (K=3), and 173,040 (K=10)
bits, which amounts to compression ratios of 4.2%, 8.3%, and 16.7%.



Extension: the real EM Algorithm

« Much slower convergence compared to K-means
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Overview

« K-means clustering
 Dimensionality reduction
» Autoencoders
« PCA
» Extensions of PCA



Continuous Latent Variable Models

« Often there are some unknown underlying causes of the data.

« So far we have looked at models with discrete latent variables, such as
the mixture of Gaussians.

« Sometimes, it is more appropriate to think in terms of continuous
factors which control the data we observe.

« Motivation: for many datasets, data points lie close to a manifold of
much lower dimensionality compared to that of the original data space.

* Training continuous latent variable models is often called dimensionality
reduction, since there are typically fewer latent dimensions.

« Examples: Principal Component Analysis, Factor Analysis, Independent
Component Analysis



Intrinsic Latent Dimensions

« What are the intrinsic latent dimensions in these two datasets?

T2 TS
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« How can we find the latent dimensions from this high-dimensional data?



Intrinsic Latent Dimensions

* In this dataset, there are only 3 degrees of freedom of variability,
corresponding to vertical- and horizontal translations, and the rotations.

313115133

« Each image undergoes a random displacement and rotation within
some larger image field.

 The resulting images have 100 x 100 = 10,000 pixels.



Autoencoders

» Neural networks can be used for nonlinear dimensionality reduction.

 This is achieved by having the same number of outputs as inputs. These
models are called autoencoders, or autoassociative networks

» Consider a multilayer perceptron that has D inputs, D outputs, and M hidden
units such that M < D.

* It is useful if we can squeeze the
information through some kind of bottleneck.

- If we use a linear network this is very similar
to Principal Component Analysis.




Autoencoders and PCA

« Given an input X, its corresponding reconstruction is given by:

M D
pew) =3 o (z wgm) Ck=1..D
j=1 i=1

« \We can determine the network parameters 5 5 .
w by minimizing the reconstruction error:
N
1 2
E(W) — 5 Z Hy(xnvw) o X‘nH . inputs
n=1

« If the hidden and output layers are lineatr,

we will learn hidden units that are a linear 1
function of the data and minimize the

squared error.

* The M hidden units will span the same space as the first m principal
components. The weight vectors may not be orthogonal.



Deep Autoencoders

« We can put extra nonlinear hidden layers between the input and the bottleneck
and between the bottleneck and the output.

 This gives a nonlinear generalization F Fy
of PCA.

» The network can be trained by the
minimization of the reconstruction
error function.

 Much harder to train.




Geometrical Interpretation

« Geometrical interpretation of the mappings performed by the network with
2 hidden layers, for the case of D=3 and M=2 units in the middle layer

L3a - <A L3
]
= F2
®
S

o > :
€T <1 €T

i) Lo

» The mapping F, defines a nonlinear projection of points in the original D-space
into the M-dimensional subspace

» The mapping F, maps from an M-dimensional space into D-dimensional space



Deep Autoencoders

« We can consider very deep autoencoders.

* There is an efficient way to learn these deep
autoencoders

=1 ..1, \,!

b ,Y»{ el :&Rf’;.

» By row: Real data, Deep autoencoder with a

bottleneck of 30 linear units, and 30-d PCA.




Deep Autoencoders

« We can consider very deep autoencoders.
« Similar model for MNIST handwritten digits:

Real data

30-d deep autoencoder

30-d logistic PCA
30-d PCA

» The Deep autoencoder produces much better reconstructions.



Class Structure of the Data

» Do the 30-D codes found by the deep autoencoder preserve the class
structure of the data?

 Take the 30-D activity patterns in the code layer and display them in 2-D
using a form of non-linear multi-dimensional scaling

« Will the learning find the natural classes?



Class Structure of the Data

» Do the 30-D codes found by the deep autoencoder preserve the class
structure of the data?

25 -

entirely
unsupervised
except for the
colors
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Overview

« K-means clustering

« Dimensionality reduction
» Autoencoders
« PCA
» Extensions of PCA



Recall: Intrinsic Latent Dimensions

* In this dataset, there are only 3 degrees of freedom of variability,
corresponding to vertical- and horizontal translations, and the rotations.

e
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« Each image undergoes a random displacement and rotation within
some larger image field.

 The resulting images have 100 x 100 = 10,000 pixels.



Generative View

« Each data example was generated by first selecting a point from a
distribution in the latent space, then generating a point from the
conditional distribution in the input space

« Simplest latent variable models: Assume a Gaussian distribution for
both the latent and observed variables.

 This leads to a probabilistic formulation of Principal Component
Analysis and Factor Analysis.

 We will look at standard PCA, and note its extensions

« Advantages of probabilistic formulations: use of EM for parameter
estimation, mixture of PCAs, Bayesian PCA.



Principal Component Analysis

» Used for data compression, visualization, feature extraction, dimensionality
reduction.

» The goal is find M principal components :c2“ / 1
underlying the D-dimensional data

- select the top M eigenvectors of S (data \/\
covariance matrix): {uy, ..., ups }. /xn

- project each input vector X, into this subspace, \/\\o
ed. 2z, =xlu /
nl n 1-

v

1

* Full projection into M dimensions » Two views/derivations:

takes the form: - Maximize variance (scatter of green

i ulT il points).
X1 xy| =21 zN] - Minimize error (red-green distance
u;, | per data point).



Maximum Variance Formulation

« Consider a dataset {x,,...,X\}, X, € RP. Our goal is to project data onto a
space having dimensionality M < D.

« Consider the projection into M=1 dimensional space. ¢ //'“1
Ty

 Define the direction of this space using a o</\

D-dimensional unit vector u,, so that ufu; = 1. /

» Objective: maximize the variance of the projected \ /

data with respect to u;. // Mo

v

1

N
1 T THA2 = T
NE {uy X, = Ui X}* = u; Suy
n=1

where sample mean and data covariance is given by:

_ 1 2
TN

1 N ’
S = ﬁZ(xn—x)(x — X)



Maximum Variance Formulation

« Maximize the variance of the projected data:

N
1 T T2 — (1
WZ{LHXn_ u; X}° = uj Su;
n=1

| //'ul
« Must constrain ||u,|| = 1. Using a Langrage .i/\o

multiplier, maximize: Xn
T T \/\./
U1 &J1+A(1_ Ul U1) /

« Setting the derivative with respect to u, to zero:

v

1

Slll = )\1111.
» Hence u; must be an eigenvector of S.
« The maximum variance of the projected data is given by:

uipSul — \1.

« Optimal u, is the principal component (eigenvector with maximal eigenvalue).



Minimum Error Formulation

« Introduce a complete orthonormal set of D-dimensional basis vectors:
{ur,..,up} :

T — . .
u,?} UJ — (523.

 Without loss of generality, we can write:

D

_ § : _ LT

— Anpils, Qp; = X, Uj.
1=1 \

Rotation of the coordinate system to a
new system defined by u.

« Our goal is to represent data points by the projection into an M-dimensional
subspace, plus some distortion

» Represent the M-dim linear subspace by the first M basis vectors
M

X, szu%—l— Z b;u;.

=1 1=M-+1



Minimum Error Formulation

« Represent M-dim linear subspace by the first M basis vectors:

M D
in — E ZniWg + E b@uz @n /u1
i=1 i=M+1 /
where z,; depend on the particular data point and b; \/\
are constants. / o
 Objective: minimize distortion with respect to u;, >/‘\.
Z,,, and b,. 1 N
_ < (12
_WZHXTL_XRH ) zr
n=1
_ T
an — Xn UJ

* Minimizing with respect to z,;, b;: T
b XU

» Hence, the objective reduces to:

| ND
:NS: s: (xtu; — xT'wy)? Z u! Su,.

n=1+=M-+1 1=M+41




Minimum Error Formulation

« Minimize distortion with respect to u;: constraint minimization problem:

N D

1 S T w
J:NZHxn—an = ) u/Su. //
n=1 1=M+41 X, \.
» The general solution is obtained by choosing u; to \/
be eigenvectors of the covariance matrix: / o
Su; = \;u;. \/‘\.
1 T “* D /
» The distortion is then given by: . J — Z ;. N
i=M+1 1

» The objective is minimized when the remaining D — M components are the
eigenvectors of S with lowest eigenvalues — same result.

« We will later see a generalization: deep autoencoders.



Applications of PCA

* Run PCA on 2429 19x19 grayscale images (CBCL database)

s R Y

« Data compression: We can get good reconstructions with only 3 components.

» Pre-processing: We can apply a standard classifier to latent representation —
PCA with 3 components obtains 79% accuracy on face/non-face discrimination in
test data, vs. 77% for a mixture of Gaussians with 84 components.

» Data visualization: by projecting the data onto the first two principal
components.



Learned Basis

* Run PCA on 2429 19x19 grayscale images (CBCL database)
!E‘E !E E




Eigenvectors for 3's

Mean A =34 10 Ay =2.B. 10F Ay =24 10° Ay = LG 0%
B
- B - il . '-._l
} -
| |- J -
The mean vector X along with the first four PCA eigenvectors u,, .. .. u, for the off-line

digits data set, together with the corresponding eigenvalues.



Brief intro to Fisher’'s LDA

* Fisher’s LDA, like PCA, can be used for dimensionality reduction.
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» PCA chooses the direction of maximum variance (magenta curve) leading
to strong class overlap (unsupervised).

» LDA takes into account the class labels (supervised), leading to a
projection into the green curve.



PCA for High-Dimensional Data

* In some applications of PCA, the number of data points is smaller than the
dimensionality of the data space, i.e. N<D.

 So far, we have needed to find the eigenvectors of the D x D data
covariance matrix S, which scales as ©(D3).
* Direct application of PCA will often be computationally infeasible.

 Solution: Let X be the N x D centred data matrix. The corresponding
eigenvector equation becomes:

1 T
—XTXu, = \uy.
N u u

* Pre-multiply by X:

1
NXXT(Xui) = \i(Xuw,).



PCA for High-Dimensional Data

* Define v; = Xu,, and hence we have:

1
N XXTVZ' = )\in,; .

» This is an eigenvector equation for the N x N matrix

* It has the same N — 1 eigenvalues as the original data covariance matrix S
(which itself has an additional D — N + 1 zero eigenvalues).

« Computational cost scales as ©O(N3) rather than O(D3).

 To determine eigenvectors, we multiply by XT:

1
(ﬁXTX) (XTv;) = Xy,

« Hence X7 v; is an eigenvector of S with eigenvalue A.

» These eigenvectors may not be normalized.



Probabilistic PCA

» \We briefly mention a 1990s probabilistic extension of PCA

» Advantages of probabilistic PCA (PPCA):

We can derive an EM algorithm for PCA, which is computationally efficient,

PPCA allows us to deal with missing values in the data set.

We can formulate a mixture of PPCAs in a principled way.

PPCA forms the basis for Bayesian PCA, in which the dimensionality of
the principal subspace can be determined from the data.

- The existence of a likelihood function allows direct comparisons with
other probabilistic density models

- And more



First five weeks

. Intro to ML.: types of learning, evaluating
models, probability theory, loss functions

. KNN, optimization, MLE, regularization

. Linear basis function models, decision
theory, classification

. Logistic regression, neural networks
. Neural networks and deep learning



