ECE 521

Lecture 11 (not on midterm material) 13 February 2017

K-means clustering, Dimensionality reduction

With thanks to Ruslan Salakhutdinov for an earlier version of the slides

Overview

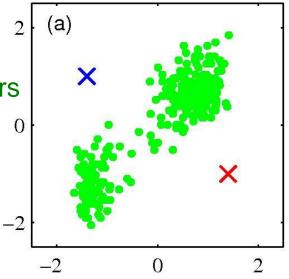
- K-means clustering
- Dimensionality reduction
 - Autoencoders
 - PCA
 - Extensions of PCA

Preface to K-means Clustering

- Recall the unknown mixing coefficients in Gaussian mixture models.
- These coefficients are an example of latent variables, which allow complicated distributions to be formed from simpler distributions.
- In general, 'mixture models' can be interpreted in terms of having discrete latent variables
- Later, we will also look at continuous latent variables.

K-Means Clustering

- Consider the following problem: Identify clusters, or groups, of data points in a multidimensional space.
- We observe the dataset $\{x_1, ..., x_N\}$ consisting of *N* observations, each of *D* dimensions
- We would like to partition the data into K clusters, where K is given
- We next introduce *D*-dimensional vectors, prototypes $\mu_k, k = 1, ..., K$.
- We can think of μ_k as representing cluster centres
- Our goal:
 - Find an assignment of data points to clusters
 - Sum of squared distances of each data point to its closest prototype is to be minimized



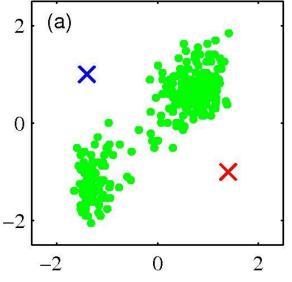
K-Means Clustering

- For each data point x_n we introduce a binary vector r_n of length K (1-of-K encoding), which indicates which of the K clusters the data point x_n is assigned to.
- Define an objective function (distortion measure):

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2.$$

• It represents the sum of squares of the distances of each data point to its assigned prototype μ_k .

• Our goal is to find the values of r_{nk} and the cluster centres μ_k so as to minimize the objective function *J*.



Iterative Algorithm

• Define an iterative procedure to minimize:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2.$$

• Given μ_k , minimize J with respect to r_{nk} (akin to the **E-step** in EM):

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_j ||\mathbf{x}_n - \boldsymbol{\mu}_j||^2 \\ 0 & \text{otherwise} \end{cases} \quad \leftarrow \quad \text{Hard assignments of points to clusters} \end{cases}$$

which simply says assign the n^{th} data point \mathbf{x}_n to its closest cluster centre

• Given r_{nk} , minimize J with respect to μ_k (akin to the **M-step**):

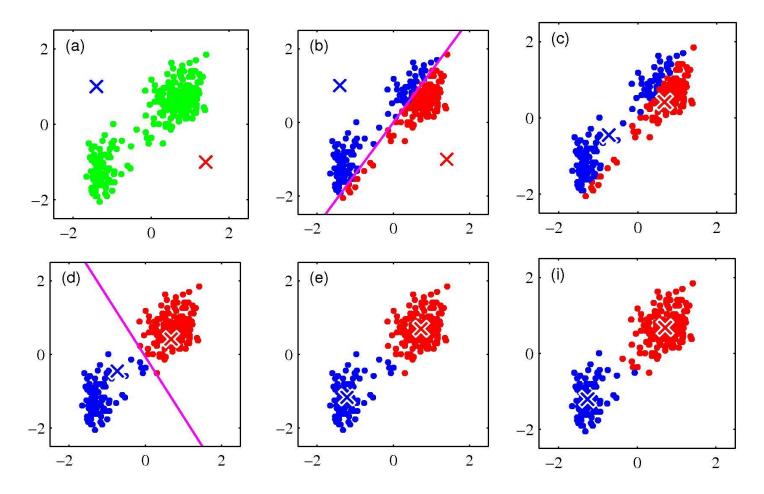
$$\boldsymbol{\mu}_{k} = \frac{\sum_{n} r_{nk} \mathbf{x}_{n}}{\sum_{n} r_{nk}} \cdot \mathbf{N}$$
 Number of points assigned to cluster *k*.

Set μ_k equal to the mean of all the data points assigned to cluster k

• Guaranteed convergence to a local minimum (not global minimum)

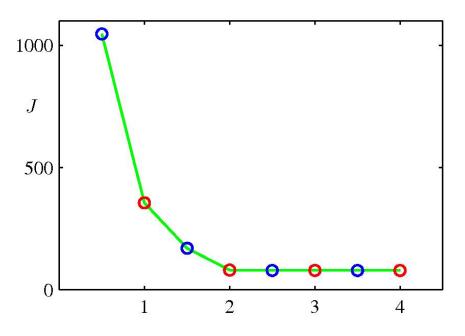
Example

• Example of using *K*-means (*K*=2) on the Old Faithful dataset.



Convergence

Plot of the cost function after each E-step (blue points) and M-step (red points)



The algorithm has converged after three iterations.

K-means can be generalized by introducing a more general dissimilarity measure:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} K(\mathbf{x}_n, \boldsymbol{\mu}_k).$$

Image Segmentation

- Another application of the K-means algorithm.
- Partition an image into regions corresponding, for example, to object parts.
- Each pixel in an image is a point in 3-D space, corresponding to R,G,B channels.

- For a given value of *K*, the algorithm represents an image using *K* colours.
- Another application is image compression.

Image Compression

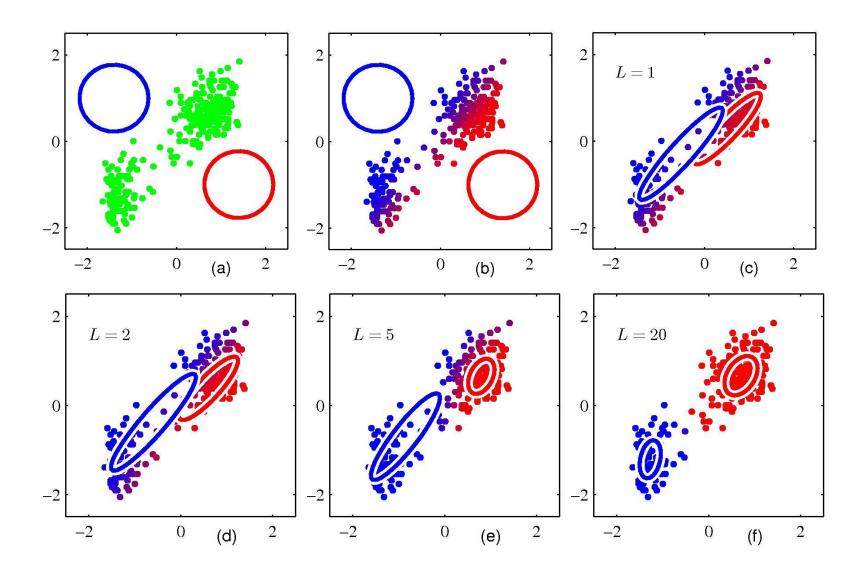
- For each data point, we store only the identity k of the assigned cluster.
- We also store the values of the cluster centers μ_k .
- Provided $K \ll N$, we require significantly less data.



- The original image has 240 x 180 = 43,200 pixels.
- Each pixel contains
 {R,G,B} values, each of which requires 8 bits.
- Requires $43,200 \times 24 = 1,036,800$ bits to transmit directly.
- With K-means, we need to transmit K code-book vectors μ_k -- 24K bits.
- For each pixel we need to transmit $log_2 K$ bits (as there are K vectors).
- Compressed image requires 43,248 (*K*=2), 86,472 (*K*=3), and 173,040 (*K*=10) bits, which amounts to compression ratios of 4.2%, 8.3%, and 16.7%.

Extension: the real EM Algorithm

• Much slower convergence compared to K-means



Overview

- K-means clustering
- Dimensionality reduction
 - Autoencoders
 - PCA
 - Extensions of PCA

Continuous Latent Variable Models

- Often there are some unknown underlying causes of the data.
- So far we have looked at models with discrete latent variables, such as the mixture of Gaussians.
- Sometimes, it is more appropriate to think in terms of continuous factors which control the data we observe.
- Motivation: for many datasets, data points lie close to a manifold of much lower dimensionality compared to that of the original data space.
- Training continuous latent variable models is often called dimensionality reduction, since there are typically fewer latent dimensions.
- Examples: Principal Component Analysis, Factor Analysis, Independent Component Analysis

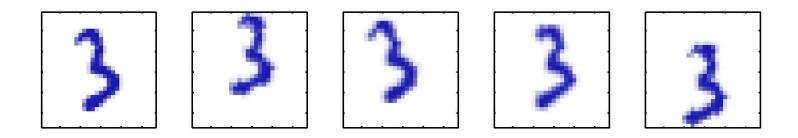
Intrinsic Latent Dimensions

• What are the intrinsic latent dimensions in these two datasets?

• How can we find the latent dimensions from this high-dimensional data?

Intrinsic Latent Dimensions

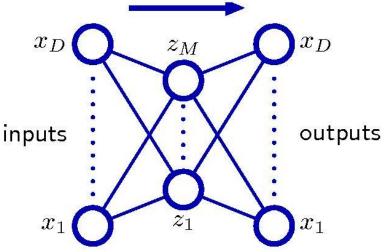
• In this dataset, there are only 3 degrees of freedom of variability, corresponding to vertical- and horizontal translations, and the rotations.



- Each image undergoes a random displacement and rotation within some larger image field.
- The resulting images have 100 x 100 = 10,000 pixels.

Autoencoders

- Neural networks can be used for nonlinear dimensionality reduction.
- This is achieved by having the same number of outputs as inputs. These models are called autoencoders, or autoassociative networks
- Consider a multilayer perceptron that has D inputs, D outputs, and M hidden units such that M < D.
- It is useful if we can squeeze the information through some kind of bottleneck.
- If we use a linear network this is very similar to Principal Component Analysis.



Autoencoders and PCA

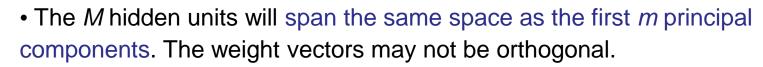
• Given an input **x**, its corresponding reconstruction is given by:

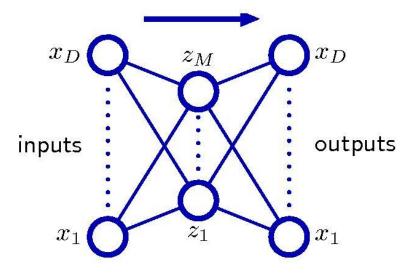
$$y_k(\mathbf{x}, \mathbf{w}) = \sum_{j=1}^M w_{kj}^{(2)} \sigma\left(\sum_{i=1}^D w_{ji}^{(1)} x_i\right), \quad k = 1, .., D.$$

We can determine the network parameters
w by minimizing the reconstruction error:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} ||y(\mathbf{x}_n, \mathbf{w}) - \mathbf{x}_n||^2.$$

• If the hidden and output layers are linear, we will learn hidden units that are a linear function of the data and minimize the squared error.

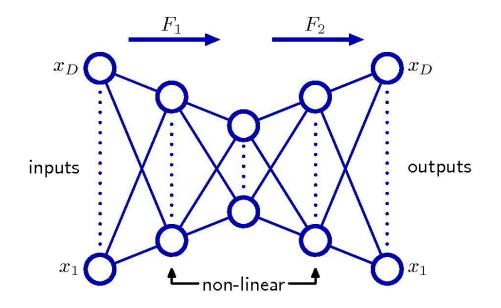




Deep Autoencoders

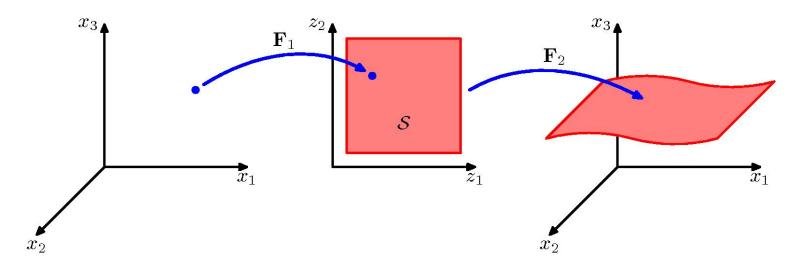
• We can put extra nonlinear hidden layers between the input and the bottleneck and between the bottleneck and the output.

- This gives a nonlinear generalization of PCA.
- The network can be trained by the minimization of the reconstruction error function.
- Much harder to train.



Geometrical Interpretation

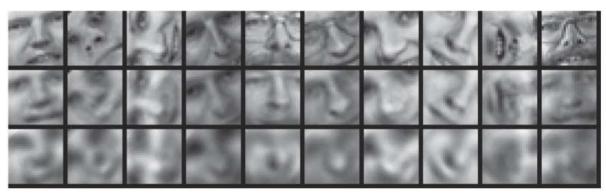
• Geometrical interpretation of the mappings performed by the network with 2 hidden layers, for the case of D=3 and M=2 units in the middle layer



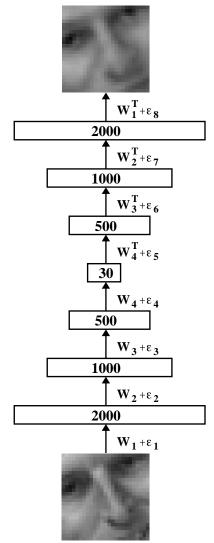
- The mapping \mathbf{F}_1 defines a nonlinear projection of points in the original *D*-space into the *M*-dimensional subspace
- The mapping F_2 maps from an *M*-dimensional space into *D*-dimensional space

Deep Autoencoders

- We can consider very deep autoencoders.
- There is an efficient way to learn these deep autoencoders



• By row: Real data, Deep autoencoder with a bottleneck of 30 linear units, and 30-d PCA.



Deep Autoencoders

- We can consider very deep autoencoders.
- Similar model for MNIST handwritten digits:

• The Deep autoencoder produces much better reconstructions.

Class Structure of the Data

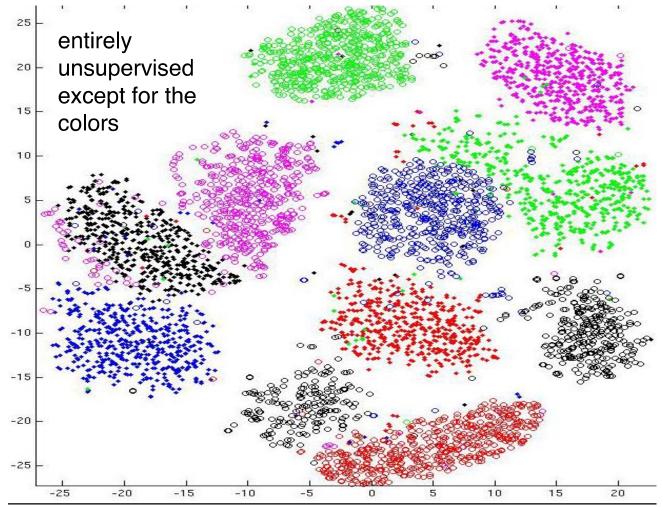
• Do the 30-D codes found by the deep autoencoder preserve the class structure of the data?

• Take the 30-D activity patterns in the code layer and display them in 2-D using a form of non-linear multi-dimensional scaling

• Will the learning find the natural classes?

Class Structure of the Data

• Do the 30-D codes found by the deep autoencoder preserve the class structure of the data?

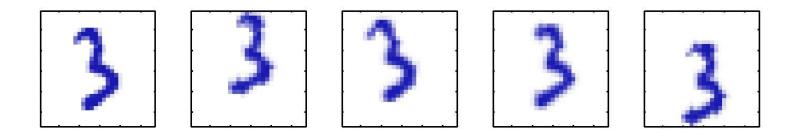


Overview

- K-means clustering
- Dimensionality reduction
 - Autoencoders
 - PCA
 - Extensions of PCA

Recall: Intrinsic Latent Dimensions

• In this dataset, there are only 3 degrees of freedom of variability, corresponding to vertical- and horizontal translations, and the rotations.



- Each image undergoes a random displacement and rotation within some larger image field.
- The resulting images have 100 x 100 = 10,000 pixels.

Generative View

• Each data example was generated by first selecting a point from a distribution in the latent space, then generating a point from the conditional distribution in the input space

• Simplest latent variable models: Assume a Gaussian distribution for both the latent and observed variables.

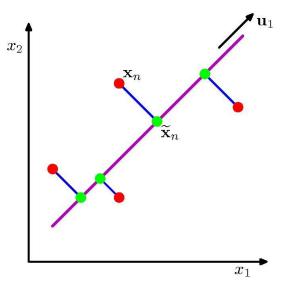
• This leads to a probabilistic formulation of Principal Component Analysis and Factor Analysis.

• We will look at standard PCA, and note its extensions

• Advantages of probabilistic formulations: use of EM for parameter estimation, mixture of PCAs, Bayesian PCA.

Principal Component Analysis

- Used for data compression, visualization, feature extraction, dimensionality reduction.
- The goal is find *M* principal components underlying the *D*-dimensional data
 - select the top M eigenvectors of **S** (data covariance matrix): $\{\mathbf{u}_1, ..., \mathbf{u}_M\}$.
 - project each input vector \mathbf{x}_n into this subspace, e.g. $z_{n1} = \mathbf{x}_n^T \mathbf{u}_1$.



• Full projection into *M* dimensions takes the form:

$$\begin{bmatrix} \mathbf{u}_1^\top \\ \cdots \\ \mathbf{u}_M^\top \end{bmatrix} [\mathbf{x}_1 \cdots \mathbf{x}_N] = [\mathbf{z}_1 \cdots \mathbf{z}_N]$$

- Two views/derivations:
 - Maximize variance (scatter of green points).
 - Minimize error (red-green distance per data point).

Maximum Variance Formulation

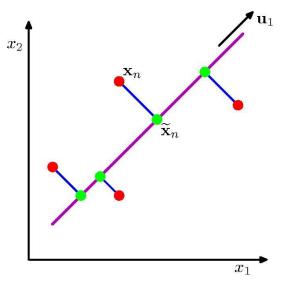
- Consider a dataset $\{x_1, ..., x_N\}$, $x_n \in \mathbb{R}^D$. Our goal is to project data onto a space having dimensionality M < D.
- Consider the projection into *M*=1 dimensional space.
- Define the direction of this space using a D-dimensional unit vector \mathbf{u}_1 , so that $\mathbf{u}_1^T \mathbf{u}_1 = 1$.
- Objective: maximize the variance of the projected data with respect to \mathbf{u}_1 .

$$\frac{1}{N}\sum_{n=1}^{N} \{\mathbf{u}_{1}^{T}\mathbf{x}_{n} - \mathbf{u}_{1}^{T}\overline{\mathbf{x}}\}^{2} = \mathbf{u}_{1}^{T}\mathbf{S}\mathbf{u}_{1}$$

where sample mean and data covariance is given by:

$$\overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^T$$



Maximum Variance Formulation

• Maximize the variance of the projected data:

$$\frac{1}{N}\sum_{n=1}^{N} \{\mathbf{u}_{1}^{T}\mathbf{x}_{n} - \mathbf{u}_{1}^{T}\overline{\mathbf{x}}\}^{2} = \mathbf{u}_{1}^{T}\mathbf{S}\mathbf{u}_{1}$$

• Must constrain ||**u**₁|| = 1. Using a Langrage multiplier, maximize:

$$\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 + \lambda (1 - \mathbf{u}_1^T \mathbf{u}_1)$$

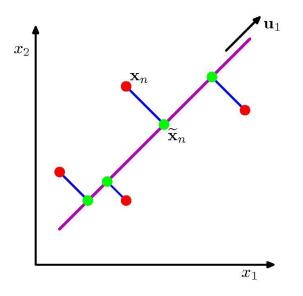
• Setting the derivative with respect to \mathbf{u}_1 to zero:

$$\mathbf{Su}_1 = \lambda_1 \mathbf{u}_1.$$

- Hence \mathbf{u}_1 must be an eigenvector of \mathbf{S} .
- The maximum variance of the projected data is given by:

$$\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 = \lambda_1.$$

• Optimal \mathbf{u}_1 is the principal component (eigenvector with maximal eigenvalue).



Minimum Error Formulation

- Introduce a complete orthonormal set of *D*-dimensional basis vectors: $\{\mathbf{u}_1, ..., \mathbf{u}_D\}$: $\mathbf{u}_i^T \mathbf{u}_j = \delta_{ij}.$
- Without loss of generality, we can write:

$$\mathbf{x}_{n} = \sum_{i=1}^{D} \alpha_{ni} \mathbf{u}_{i}, \quad \alpha_{ni} = \mathbf{x}_{n}^{T} \mathbf{u}_{i}.$$
Rotation of the coordinate system to a new system defined by \mathbf{u}_{i} .

- Our goal is to represent data points by the projection into an *M*-dimensional subspace, plus some distortion
- Represent the *M*-dim linear subspace by the first *M* basis vectors

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^M z_{ni} \mathbf{u}_i + \sum_{i=M+1}^D b_i \mathbf{u}_i.$$

Minimum Error Formulation

Represent *M*-dim linear subspace by the first *M* basis vectors:

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^M z_{ni} \mathbf{u}_i + \sum_{i=M+1}^D b_i \mathbf{u}_i.$$

where z_{ni} depend on the particular data point and b_i are constants.

• Objective: minimize distortion with respect to **u**_{*i*},

$$z_{ni}$$
, and b_{i} . $J = rac{1}{N}\sum_{n=1}^{N}||\mathbf{x}_n - ilde{\mathbf{x}}_n||^2.$

• Minimizing with respect to z_{ni} , b_i :

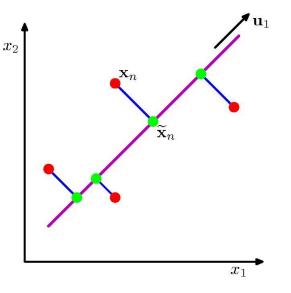
$$z_{nj} = x_n^{T} u_j$$

 $b_j = \overline{x}^{T} u_j$

VT.

• Hence, the objective reduces to:

$$J = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=M+1}^{D} (\mathbf{x}_n^T \mathbf{u}_i - \bar{\mathbf{x}}^T \mathbf{u}_i)^2 = \sum_{i=M+1}^{D} \mathbf{u}_i^T \mathbf{S} \mathbf{u}_i$$



Minimum Error Formulation

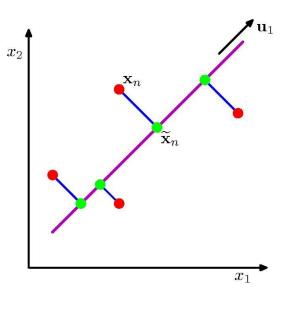
• Minimize distortion with respect to **u**_i: constraint minimization problem:

$$J = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \tilde{\mathbf{x}}_n||^2 = \sum_{i=M+1}^{D} \mathbf{u}_i^T \mathbf{S} \mathbf{u}_i.$$

• The general solution is obtained by choosing \mathbf{u}_i to be eigenvectors of the covariance matrix:

$$\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i.$$

• The distortion is then given by: $J = \sum \lambda_i$.



• The objective is minimized when the remaining D - M components are the eigenvectors of **S** with *lowest eigenvalues* \rightarrow same result.

i=M+1

• We will later see a generalization: deep autoencoders.

Applications of PCA

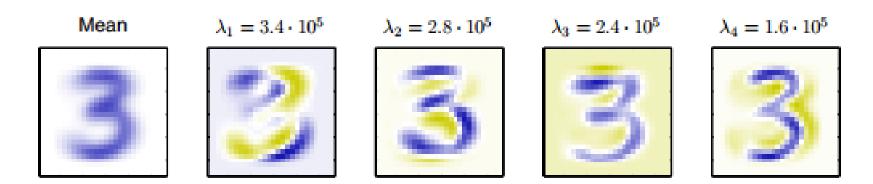
• Run PCA on 2429 19x19 grayscale images (CBCL database)

- Data compression: We can get good reconstructions with only 3 components.
- Pre-processing: We can apply a standard classifier to latent representation PCA with 3 components obtains 79% accuracy on face/non-face discrimination in test data, vs. 77% for a mixture of Gaussians with 84 components.
- Data visualization: by projecting the data onto the first two principal components.

Learned Basis

• Run PCA on 2429 19x19 grayscale images (CBCL database)

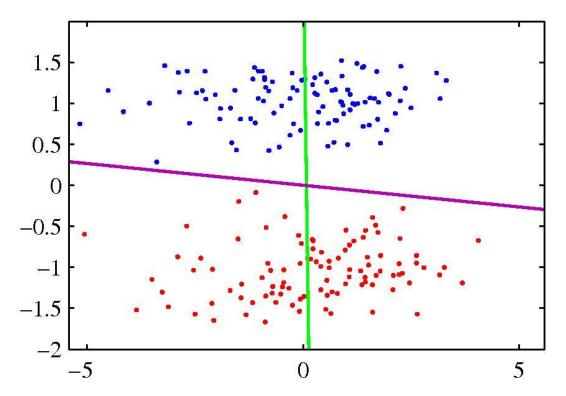
Eigenvectors for 3's



The mean vector $\overline{\mathbf{x}}$ along with the first four PCA eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_4$ for the off-line digits data set, together with the corresponding eigenvalues.

Brief intro to Fisher's LDA

• Fisher's LDA, like PCA, can be used for dimensionality reduction.



• PCA chooses the direction of maximum variance (magenta curve) leading to strong class overlap (unsupervised).

• LDA takes into account the class labels (supervised), leading to a projection into the green curve.

PCA for High-Dimensional Data

• In some applications of PCA, the number of data points is smaller than the dimensionality of the data space, i.e. *N*<*D*.

- So far, we have needed to find the eigenvectors of the $D \ge D$ data covariance matrix **S**, which scales as $\mathcal{O}(D^3)$.
- Direct application of PCA will often be computationally infeasible.
- Solution: Let **X** be the $N \times D$ centred data matrix. The corresponding eigenvector equation becomes:

$$\frac{1}{N}\mathbf{X}^T\mathbf{X}\mathbf{u}_i = \lambda_i \mathbf{u}_i.$$

• Pre-multiply by **X**:

$$\frac{1}{N}\mathbf{X}\mathbf{X}^T(\mathbf{X}\mathbf{u}_i) = \lambda_i(\mathbf{X}\mathbf{u}_i).$$

PCA for High-Dimensional Data

• Define $\mathbf{v}_i = \mathbf{X}\mathbf{u}_i$, and hence we have:

$$\frac{1}{N} \mathbf{X} \mathbf{X}^T \mathbf{v}_i = \lambda_i \mathbf{v}_i.$$

- This is an eigenvector equation for the N x N matrix
- It has the same N-1 eigenvalues as the original data covariance matrix S (which itself has an additional D-N+1 zero eigenvalues).
- Computational cost scales as $\mathcal{O}(N^3)$ rather than $\mathcal{O}(D^3)$.
- To determine eigenvectors, we multiply by \mathbf{X}^{T} :

$$\left(\frac{1}{N}\mathbf{X}^T\mathbf{X}\right)(\mathbf{X}^T\mathbf{v}_i) = \lambda_i\mathbf{X}^T\mathbf{v}_i.$$

- Hence $\mathbf{X}^{\mathsf{T}} \mathbf{v}_i$ is an eigenvector of **S** with eigenvalue λ_i .
- These eigenvectors may not be normalized.

Probabilistic PCA

- We briefly mention a 1990s probabilistic extension of PCA
- Advantages of probabilistic PCA (PPCA):
 - We can derive an EM algorithm for PCA, which is computationally efficient.
 - PPCA allows us to deal with missing values in the data set.
 - We can formulate a mixture of PPCAs in a principled way.
 - PPCA forms the basis for Bayesian PCA, in which the dimensionality of the principal subspace can be determined from the data.
 - The existence of a likelihood function allows direct comparisons with other probabilistic density models
 - And more

First five weeks

- 1. Intro to ML: types of learning, evaluating models, probability theory, loss functions
- 2. kNN, optimization, MLE, regularization
- 3. Linear basis function models, decision theory, classification
- 4. Logistic regression, neural networks
- 5. Neural networks and deep learning